Переход к половинному углу тригонометрических уравнений

Тригонометрические уравнения — формулы, решения, примеры

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Видео:10 класс, 31 урок, Методы решения тригонометрических уравнений (продолжение)Скачать

10 класс, 31 урок, Методы решения тригонометрических уравнений (продолжение)

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`

Переход к половинному углу тригонометрических уравнений

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| leq 1` имеет бесконечное множество решений.

Формула корней: `x=pm arccos a + 2pi n, n in Z`

Переход к половинному углу тригонометрических уравнений

Частные случаи для синуса и косинуса в графиках.Переход к половинному углу тригонометрических уравнений

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + pi n, n in Z`

Переход к половинному углу тригонометрических уравнений

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + pi n, n in Z`

Переход к половинному углу тригонометрических уравнений

Видео:Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.

Формулы корней тригонометрических уравнений в таблице

Для синуса:Переход к половинному углу тригонометрических уравненийДля косинуса:Переход к половинному углу тригонометрических уравненийДля тангенса и котангенса:Переход к половинному углу тригонометрических уравненийФормулы решения уравнений, содержащих обратные тригонометрические функции:

Переход к половинному углу тригонометрических уравнений

Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,

делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.

2. `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =pi n`, `x_1=2pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.

Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
  2. `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.

Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a<sqrt >=cos varphi`, ` frac b<sqrt > =sin varphi`, `frac c<sqrt >=C`, тогда:

`cos varphi sin x + sin varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt `, получим:

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos varphi sin x+sin varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`x+varphi=(-1)^n arcsin 2/5+ pi n`, `n in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `frac =1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=pi n`, `n in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.

Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.

Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Формулы половинного угла в тригонометрии

Формулы половинного угла (аргумента) представляют собой противоположность формулам двойного угла , так как они выражают синус, косинус, тангенс и котангенс угла α 2 при помощи тригонометрических функций угла α . В статье раскрыты формулы половинного угла и добавлены их доказательства с примерами решений.

Видео:Двойной и половинный угол. Тригонометрия-10Скачать

Двойной и половинный угол. Тригонометрия-10

Список формул половинного угла

Стандартные формулы половинного угла:

sin 2 α 2 = 1 — cos α 2 cos 2 α 2 = 1 + cos α 2 t g 2 α 2 = 1 — cos α 1 + cos α c t g 2 α 2 = 1 + cos α 1 — cos α

Формулы для sin и cos половинного угла справедливы при любом значении заданного угла α . Формулу для t g любого угла α определяет t g α 2 , значение угла α ≠ π + 2 π · z при z равном любому целому числу ( выражение 1 + cos α с таким же значением α не должно принимать значение 0 ). Формула c t g угла считается справедливой для любого угла α , где половинный угол имеет место быть, α ≠ 2 π · z .

Самые значимые формулы половинного угла для квадратов тригонометрических функций выводятся через положительное или отрицательное значение арифметического квадратного корня. Имеем формулы половинного угла:

sin α 2 = ± 1 — cos α 2 , cos α 2 = ± 1 + cos α 2 , t g α 2 = ± 1 — cos α 1 + cos α , c t g α 2 = ± 1 + cos α 1 — cos α

Знак «-» указывает, что тригонометрическая функция принадлежит определенной четверти угла α 2 .

Применим формулы на практике.

Видео:10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степениСкачать

10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степени

Доказательство формул половинного угла

Доказательство формул половинного угла основывается на формулах cos двойного угла cos α = 1 — 2 · sin 2 α 2 и cos α = 2 · cos 2 α 2 — 1 . Упростив первое выражение по sin 2 α 2 , получим саму формулу половинного угла sin 2 α 2 = 1 — cos α 2 , второе выражение по cos 2 α 2 получим cos 2 α 2 = 1 + cos α 2 .

Чтобы доказать формулы половинного угла для t g и c t g угла α 2 , необходимо применить основные тригонометрические тождества t g α 2 = sin α 2 cos α 2 и c t g α 2 = cos α 2 sin α 2 , к ним необходимо добавить формулы половинного угла cos и sin , которые доказали выше. При подстановке получим выражения, имеющие вид:

t g 2 α 2 = sin 2 α 2 cos 2 α 2 = 1 — cos α 2 1 + cos α 2 = 1 — cos α 1 + cos α ; c t g 2 α 2 = cos 2 α 2 sin 2 α 2 = 1 — cos α 2 1 + cos α 2 = 1 + cos α 1 — cos α ;

Все формулы половинного угла были доказаны.

Видео:решение тригонометрических уравнений через половинный уголСкачать

решение тригонометрических уравнений через половинный угол

Примеры использования

Покажем применение формул половинного угла при решении примера.

Известно, что cos 30 ° = 3 2 . Необходимо вычислить значение cos 15 градусов, используя формулы половинного угла.

Данный пример рассматривает применение формулы половинного угла для косинуса, имеющей вид cos 2 α 2 = 1 + cos α 2 .

Следуя из условия, подставляем числовые значения и получаем: cos 2 15 ° = 1 + cos 30 ° 2 = 1 + 3 2 2 = 2 + 3 4 . После получения значения косинуса 15 градусов, необходимо найти само значение косинуса. Для этого вспомним, что угол в 15 градусов принадлежит первой четверти. Там косинус угла имеет положительное значение ( чтобы вспомнить знаки тригонометрических функций, необходимо повторить теорию знаков синуса, косинуса, тангенса и котангенса по четвертям). Следуя из вышесказанного, имеем cos 2 15 ° = 2 + 3 4 , тогда cos 15 ° = 2 + 3 4 = 2 + 3 2 . Ответ: cos 15 ° = 2 + 3 2 .

Применяя формулу половинного угла, стоит учитывать тот факт, что угол может быть не явного вида α 2 и α , а потребует дальнейшего приведения к стандартному виду. Главное условие – нахождение аргумента в правой части формул половинного угла было в 2 раза больше, чем в левой. Иначе применение формулы будет невозможно.

Если формула позволит записывать данное равенство таким образом sin 2 7 α = 1 — cos 14 α 2 или sin 2 5 α 17 = 1 — cos 10 α 17 2 , то формула будет применима.

Для правильного преобразования и применения формул половинного аргумента необходимо досконально изучить свойства тригонометрических функций. Не любое выражение поддается такому преобразованию в тригонометрии. Необходимо внимательно следить за значениями углов тригонометрических функций и их нахождение в четвертях для определения знака для выражения.

Все формулы половинного угла в тригонометрии:

Видео:Решение тригонометрических уравнений методом вспомогательного углаСкачать

Решение тригонометрических уравнений методом вспомогательного угла

Переход к половинному углу тригонометрических уравнений

Переход к половинному углу тригонометрических уравнений

Переход к половинному углу тригонометрических уравнений

Переход к половинному углу тригонометрических уравнений

Видео:Тригонометрия. Урок 14. Формулы половинного угла.Скачать

Тригонометрия. Урок 14. Формулы половинного угла.

Методы решения тригонометрических уравнений.

Видео:СИНУС КОСИНУС ТАНГЕНС ПОЛОВИННОГО УГЛА тригонометрияСкачать

СИНУС КОСИНУС ТАНГЕНС ПОЛОВИННОГО УГЛА тригонометрия

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Переход к половинному углу тригонометрических уравнений

Видео:Формулы половинного угла. 9 класс.Скачать

Формулы половинного угла. 9 класс.

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

Переход к половинному углу тригонометрических уравнений

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

Переход к половинному углу тригонометрических уравнений

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

Переход к половинному углу тригонометрических уравнений

Видео:Косинус и синус двойного угла, часть 1. Алгебра 10 классСкачать

Косинус и синус двойного угла, часть 1. Алгебра 10 класс

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

Переход к половинному углу тригонометрических уравнений

Видео:Формулы двойного угла. 9 класс.Скачать

Формулы двойного угла. 9 класс.

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

Видео:ДВОЙНЫЕ УГЛЫ И ФОРМУЛЫ ПРИВЕДЕНИЯ 😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

ДВОЙНЫЕ УГЛЫ И ФОРМУЛЫ ПРИВЕДЕНИЯ 😉 #shorts #егэ #огэ #математика #профильныйегэ

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Переход к половинному углу тригонометрических уравнений

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos Переход к половинному углу тригонометрических уравненийи sin Переход к половинному углу тригонометрических уравнений( здесь Переход к половинному углу тригонометрических уравнений— так называемый вспомогательный угол ), и наше уравнение прини мает вид:

Переход к половинному углу тригонометрических уравнений

Переход к половинному углу тригонометрических уравнений

Видео:Синус и косинус двойного и половинного угла. Тригонометрия-9Скачать

Синус и косинус двойного и половинного угла. Тригонометрия-9

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

🎦 Видео

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Формулы приведения - как их легко выучить!Скачать

Формулы приведения - как их легко выучить!

✓ Тригонометрические формулы | Борис ТрушинСкачать

✓ Тригонометрические формулы | Борис Трушин

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой

Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.Скачать

Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.
Поделиться или сохранить к себе: