Пассивация железа в азотной кислоте уравнение

Видео:Пассивация железа в конц. азотной кислотеСкачать

Пассивация железа в конц. азотной кислоте

Пассивация железа в азотной кислоте уравнение

Пассивация железа в азотной кислоте уравнениеВзаимодействие железа с концентрированными кислотами

Безводная серная и азотная кислоты пассивируют железо, не реагируют с ним. Однако концентрированные растворы этих кислот растворяют железо. Приготовим две колбы с кусочками железа. Концентрированная азотная кислота бурно реагирует с железом. Продукты реакции – нитрат железа ( III ) и бурый газ – диоксид азота ( IV ).

Концентрированная серная кислота тоже реагирует с железом. Выделяется сернистый газ.

И в том, и в другом случае происходит окисление железа до степени окисления + III . Даже небольшие количества воды, содержащиеся в концентрированных кислотах, сильно влияют на их свойства. Концентрированные и безводные кислоты – не одно и то же.

Оборудование: колбы, пинцет.

Техника безопасности . Соблюдать правила работы с концентрированными кислотами. Опыт проводится под тягой, так как выделяются ядовитые оксиды азота и оксид серы.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Видео:Пассивация железа азотной кислотойСкачать

Пассивация железа азотной кислотой

Азотная кислота

Азотная кислота является одной из самых сильных минеральных кислот, в концентрированном виде выделяет пары желтого цвета с резким запахом. За исключением золота и платины растворяет все металлы.

Применяют азотную кислоту для получения красителей, удобрений, органических нитропродуктов, серной и фосфорной кислот. В результате ожога азотной кислотой образуется сухой струп желто-зеленого цвета.

Пассивация железа в азотной кислоте уравнение

В промышленности азотную кислоту получают в результате окисления аммиака на платино-родиевых катализаторах.

Чистая азотная кислота впервые была получена действием на селитру концентрированной серной кислоты:

Является одноосновной сильной кислотой, вступает в реакции с основными оксидами, основаниями. С солями реагирует при условии выпадения осадка, выделения газа или образования слабого электролита.

Пассивация железа в азотной кислоте уравнение

При нагревании азотная кислота распадается. На свету (hv) также происходит подобная реакция, поэтому азотную кислоту следует хранить в темном месте.

Реакции с неметаллами

Азотная кислота способна окислить все неметаллы, при этом, если кислота концентрированная, азот обычно восстанавливается до NO2, если разбавленная — до NO.

Пассивация железа в азотной кислоте уравнение

В любой концентрации азотная кислота проявляет свойства окислителя, при этом азот восстанавливается до степени окисления от +5 до -3. На какой именно степени окисления остановится азот, зависит от активности металла и концентрации азотной кислоты.

Для малоактивных металлов (стоящих в ряду напряжений после водорода) реакция с концентрированной азотной кислотой происходит с образованием нитрата и преимущественно NO2.

С разбавленной азотной кислотой газообразным продуктом преимущественно является NO.

В реакциях с металлами, стоящими левее водорода в ряду напряжений, возможны самые разные газообразные (и не газообразные) продукты: бурый газ NO2, NO, N2O, атмосферный газ N2, NH4NO3.

Помните о закономерности: чем более разбавлена кислота и активен металл, тем сильнее восстанавливается азот. Ниже представлены реакции цинка с азотной кислотой в различных концентрациях.

Пассивация железа в азотной кислоте уравнение

Посмотрите на таблицу ниже, в которой также отражены изученные нами закономерности.

Пассивация железа в азотной кислоте уравнение

Концентрированная холодная азотная кислота пассивирует хром, железо, алюминий, никель, свинец и бериллий. Это происходит за счет оксидной пленки, которой покрыты данные металлы.

Al + HNO3(конц.) ⇸ (реакция не идет)

При нагревании или амальгамировании (покрытие ртутью) перечисленных металлов реакция с азотной кислотой идет, так как оксидная пленка на поверхности металлов разрушается.

Соли азотной кислоты — нитраты NO3

Получают нитраты в ходе реакции азотной кислоты с металлами, их оксидами и основаниями.

В реакциях с оксидами и основаниями газообразный продукт обычно не выделяется.

Пассивация железа в азотной кислоте уравнение

Нитрат аммония получают реакция аммиака с азотной кислотой.

Обратите внимание на следующую закономерность: концентрированная азотная кислота, как правило, окисляет железо и хром до +3. Разбавленная кислота — до +2.

    Реакции с металлами, основаниями и кислотами

Как и для всех солей, из нитратов можно вытеснить металл другим более активным. Соли реагируют с основаниями и кислотами, если в результате реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

Пассивация железа в азотной кислоте уравнение

Нитраты разлагаются в зависимости от активности металла, входящего в их состав.

Пассивация железа в азотной кислоте уравнение

Пассивация железа в азотной кислоте уравнение

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Видео:Пассивация железа в конц азотной кислотеСкачать

Пассивация железа в конц  азотной кислоте

Железо. Свойства железа и его соединений

Железо Fe: химические свойства, способы получения железа, взаимодействие с простыми веществами (кислород, сера) и со сложными веществами (кислоты, вода, сильные окислители). Оксид железа (II) FeO, оксид железа (III) Fe2O3, железная окалина (Fe3O4) — способы получения и химические свойства. Гидроксид железа (II) Fe(OH)2, гидроксид железа (III) Fe(OH)3 — способы получения и химические свойства.

Железо

Положение в периодической системе химических элементов

Элемент железо расположен в побочной подгруппе VIII группы (или в 8 группе в современной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение атома железа

Электронная конфигурация железа в основном состоянии :

+26Fe 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6

Пассивация железа в азотной кислоте уравнение

Железо проявляет ярко выраженные магнитные свойства.

Физические свойства

Железо – металл серебристо-белого цвета, с высокой химической активностью и высокой ковкостью. Обладает высокой тепло- и электропроводностью.

Пассивация железа в азотной кислоте уравнение (изображение с портала vchemraznica.ru)

Температура плавления 1538 о С, температура кипения 2861 о С.

Нахождение в природе

Железо довольно распространено в земной коре (порядка 4% массы земной коры). По распространенности на Земле железо занимает 4-ое место среди всех элементов и 2-ое место среди металлов. Содержание в земной коре — около 8%.

В природе железо в основном встречается в виде соединений:

Пассивация железа в азотной кислоте уравнение (изображение с портала karatto.ru)

Магнитный железняк Fe3O4 или FeO·Fe2O3 (магнетит).

Пассивация железа в азотной кислоте уравнение

(изображение с портала emchi-med.ru)

В природе также широко распространены сульфиды железа, например, пирит FeS2.

Пассивация железа в азотной кислоте уравнение (изображение с портала livemaster.ru)

Встречаются и другие минералы, содержащие железо.

Способы получения

Железо в промышленности получают из железной руды, гематита Fe2O3 или магнетита (Fe3O4или FeO·Fe2O3).

1. Один из основных способов производства железа – доменный процесс . Доменный процесс основан на восстановлении железа из оксида углеродом в доменной печи.

В печь загружают руду, кокс и флюсы.

Шихта смесь исходных материалов, а в некоторых случаях и топлива в определённой пропорции, которую обрабатывают в печи.

Каменноугольный кокс это твёрдый пористый продукт серого цвета, получаемый путем коксования каменного угля при температурах 950—1100 °С без доступа воздуха. Содержит 96—98 % углерода.

Флюсы это неорганические вещества, которые добавляют к руде при выплавке металлов, чтобы снизить температуру плавления и легче отделить металл от пустой породы.

Шлак расплав (а после затвердевания стекловидная масса), покрывающий поверхность жидкого металла. Шлак состоит из всплывших продуктов пустой породы с флюсами и предохраняет металл от вредного воздействия газовой среды печи, удаляет примеси.

В печи кокс окисляется до оксида углерода (II):

2C + O2 → 2CO

Затем нагретый угарный газ восстанавливает оксид железа (III):

Процесс получения железа – многоэтапный и зависит от температуры.

Наверху, где температура обычно находится в диапазоне между 200 °C и 700 °C, протекает следующая реакция:

Ниже в печи, при температурах приблизительно 850 °C, протекает восстановление смешанного оксида железа (II, III) до оксида железа (II):

Встречные потоки газов разогревают шихту, и происходит разложение известняка:

Оксид железа (II) опускается в область с более высоких температур (до 1200 o C), где протекает следующая реакция:

FeO + CO → Fe + CO2

Углекислый газ поднимается вверх и реагирует с коксом, образуя угарный газ:

CO2 + C → 2CO

Пассивация железа в азотной кислоте уравнение (изображение с портала 900igr.net)

2. Также железо получают прямым восстановлением из оксида водородом:

При этом получается более чистое железо, т.к. получаемое железо не загрязнено серой и фосфором, которые являются примесями в каменном угле.

3. Еще один способ получения железа в промышленности – электролиз растворов солей железа.

Качественные реакции

Качественные реакции на ионы железа +2.

– взаимодействие солей железа (II) с щелочами . При этом образуется серо-зеленый студенистый осадок гидроксида железа (II).

Например , хлорид железа (II) реагирует с гидроксидом натрия:

2NaOH + FeCl2 → Fe(OH)2 + 2NaCl

Пассивация железа в азотной кислоте уравнение

Видеоопыт взаимодействия раствора сульфата железа (II) с раствором гидроксида натрия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

Гидроксид железа (II) на воздухе буреет, так как окисляется до гидроксида железа (III):

– ионы железа +2 окрашивают раствор в светлый желто-зеленый цвет.

Пассивация железа в азотной кислоте уравнение

– взаимодействие с красной кровяной солью K3[Fe(CN)6] – также качественная реакция на ионы железа +2. При этом образуется синий осадок «турнбулева синь».

Пассивация железа в азотной кислоте уравнение

Видеоопыт взаимодействия раствора хлорида железа (II) с раствором гексацианоферрата (III) калия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

Качественные реакции на ионы железа +3

– взаимодействие солей железа (III) с щелочами . При этом образуется бурый осадок гидроксида железа (III).

Пассивация железа в азотной кислоте уравнение Пассивация железа в азотной кислоте уравнение

Например , хлорид железа (III) реагирует с гидроксидом натрия:

3NaOH + FeCl3 → Fe(OH)3 + 3NaCl

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гидроксида натрия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

– ионы железа +3 окрашивают раствор в светлый желто-оранжевый цвет.

Пассивация железа в азотной кислоте уравнение

– взаимодействие с желтой кровяной солью K4[Fe(CN)6] ионы железа +3. При этом образуется синий осадок «берлинская лазурь».

Пассивация железа в азотной кислоте уравнение

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гексацианоферрата (II) калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

В последнее время получены данные, которые свидетельствуют, что молекулы берлинской лазури идентичны по строению молекулам турнбулевой сини. Состав молекул обоих этих веществ можно выразить формулой Fe4[Fe2(CN)6]3.

– при взаимодействии солей железа (III) с роданидами раствор окрашивается в кроваво-красный цвет.

Например , хлорид железа (III) взаимодействует с роданидом натрия:

FeCl3 + 3NaCNS → Fe(CNS)3 + 3NaCl

Пассивация железа в азотной кислоте уравнение

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором роданида калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

Химические свойства

1. При обычных условиях железо малоактивно , но при нагревании, в особенности в мелкораздробленном состоянии, оно становится активным и реагирует почти со всеми неметаллами .

1.1. Железо реагирует с галогенами с образованием галогенидов. При этом активные неметаллы (фтор, хлор и бром) окисляют железо до степени окисления +3:

2Fe + 3Cl2 → 2FeCl3

Менее активный йод окисляет железо до степени окисления +2:

1.2. Железо реагирует с серой с образованием сульфида железа (II):

Fe + S → FeS

1.3. Железо реагирует с фосфором . При этом образуется бинарное соединения – фосфид железа:

Fe + P → FeP

1.4. С азотом железо реагирует в специфических условиях.

1.5. Железо реагирует с углеродом и кремнием с образованием карбида и силицида.

1.6. При взаимодействии с кислородом железо образует окалину – двойной оксид железа (II, III):

При пропускании кислорода через расплавленное железо возможно образование оксида железа (II):

2Fe + O2 → 2FeO

2. Железо взаимодействует со сложными веществами.

2.1. При обычных условиях железо с водой практически не реагирует. Раскаленное железо может вступать в реакцию при температуре 700-900 о С с водяным паром:

3 Fe 0 + 4 H2 + O → Fe +3 3O4 + 4 H2 0

В воде в присутствии кислорода или во влажном воздухе железо медленно окисляется (корродирует):

2.2. Железо взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль железа со степенью окисления +2 и водород.

Например , железо бурно реагирует с соляной кислотой :

Fe + 2HCl → FeCl2 + H2

2.3. При обычных условиях железо не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат железа (III) и вода:

2.4. Железо не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации. При нагревании реакция идет с образованием нитрата железа (III), оксида азота (IV) и воды:

С разбавленной азотной кислотой железо реагирует с образованием оксида азота (II):

При взаимодействии железа с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Железо может реагировать с щелочными растворами или расплавами сильных окислителей . При этом железо окисляет до степени окисления +6, образуя соль (феррат).

Например , при взаимодействии железа с расплавом нитрата калия в присутствии гидроксида калия железо окисляется до феррата калия, а азот восстанавливается либо до нитрита калия, либо до аммиака:

2.6. Железо восстанавливает менее активные металлы из оксидов и солей .

Например , железо вытесняет медь из сульфата меди (II). Реакция экзотермическая:

Fe + CuSO4 → FeSO4 + Cu

Еще пример : простое вещество железо восстанавливает железо до степени окисления +2 при взаимодействии с соединениями железа +3:

2FeCl3 + Fe → 3FeCl2

Оксид железа (II)

Оксид железа (II) – это твердое, нерастворимое в воде вещество черного цвета.

Пассивация железа в азотной кислоте уравнение

Способы получения

Оксид железа (II) можно получить различными методами :

1. Частичным в осстановлением оксида железа (III).

Например , частичным восстановлением оксида железа (III) водородом:

Или частичным восстановлением оксида железа (III) угарным газом:

Еще один пример : восстановление оксида железа (III) железом:

2. Разложение гидроксида железа (II) при нагревании :

Химические свойства

Оксид железа (II) — типичный основный оксид .

1. При взаимодействии оксида железа (II) с кислотными оксидами образуются соли.

Например , оксид железа (II) взаимодействует с оксидом серы (VI):

FeO + SO3 → FeSO4

2. Оксид железа (II) взаимодействует с растворимыми кислотами. При этом также образуются соответствующие соли .

Например , оксид железа (II) взаимодействует с соляной кислотой:

FeO + 2HCl → FeCl2 + H2O

3. Оксид железа (II) не взаимодействует с водой.

4. Оксид железа (II) малоустойчив, и легко окисляется до соединений железа (III).

Например , при взаимодействии с концентрированной азотной кислотой образуются нитрат железа (III), оксид азота (IV) и вода:

При взаимодействии с разбавленной азотной кислотой образуется оксид азота (II). Реакция идет при нагревании:

5. Оксид железа (II) проявляет слабые окислительные свойства .

Например , оксид железа (II) реагирует с угарным газом при нагревании:

FeO + CO → Fe + CO2

Оксид железа (III)

Оксид железа (III) – это твердое, нерастворимое в воде вещество красно-коричневого цвета.

Пассивация железа в азотной кислоте уравнение

Способы получения

Оксид железа (III) можно получить различными методами :

1. Окисление оксида железа (II) кислородом.

2. Разложение гидроксида железа (III) при нагревании :

Химические свойства

Оксид железа (III) – амфотерный .

1. При взаимодействии оксида железа (III) с кислотными оксидами и кислотами образуются соли.

Например , оксид железа (III) взаимодействует с азотной кислотой:

2. Оксид железа (III) взаимодействует с щелочами и основными оксидами. Реакция протекает в расплаве, при этом образуется соответствующая соль (феррит) .

Например , оксид железа (III) взаимодействует с гидроксидом натрия:

3. Оксид железа (III) не взаимодействует с водой.

4. Оксид железа (III) окисляется сильными окислителями до соединений железа (VI).

Например , хлорат калия в щелочной среде окисляет оксид железа (III) до феррата:

Нитраты и нитриты в щелочной среде также окисляют оксид железа (III):

5. Оксид железа (III) проявляет окислительные свойства .

Например , оксид железа (III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II) или железной окалины:

Также оксид железа (III) восстанавливается водородом:

Железом можно восстановить оксид железа только до оксида железа (II):

Оксид железа (III) реагирует с более активными металлами .

Например , с алюминием (алюмотермия):

Оксид железа (III) реагирует также с некоторыми другими сильными восстановителями.

Например , с гидридом натрия:

Fe2O3 + 3NaH → 3NaOH + 2Fe

6. Оксид железа (III) – твердый, нелетучий и амфотерный. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например , из карбоната натрия:

Оксид железа (II, III)

Оксид железа (II, III) (железная окалина, магнетит) – это твердое, нерастворимое в воде вещество черного цвета.

Пассивация железа в азотной кислоте уравнение

Фото с сайта wikipedia.ru

Способы получения

Оксид железа (II, III) можно получить различными методами :

1. Горение железа на воздухе:

2. Частичное восстановление оксида железа (III) водородом или угарным газом :

3. При высокой температуре раскаленное железо реагирует с водой, образуя двойной оксид железа (II, III):

Химические свойства

Свойства оксида железа (II, III) определяются свойствами двух оксидов, из которых он состоит: основного оксида железа (II) и амфотерного оксида железа (III).

1. При взаимодействии оксида железа (II, III) с кислотными оксидами и кислотами образуются соли железа (II) и железа (III).

Например , оксид железа (II, III) взаимодействует с соляной кислотой. При это образуются две соли – хлорид железа (II) и хлорид железа (III):

Еще пример : оксид железа (II, III) взаимодействует с разбавленной серной кислотой.

2. Оксид железа (II, III) взаимодействует с сильными кислотами-окислителями (серной-концентрированной и азотной).

Например , железная окалина окисляется концентрированной азотной кислотой:

Разбавленной азотной кислотой окалина окисляется при нагревании:

Также оксид железа (II, III) окисляется концентрированной серной кислотой:

Также окалина окисляется кислородом воздуха :

3. Оксид железа (II, III) не взаимодействует с водой.

4. Оксид железа (II, III) окисляется сильными окислителями до соединений железа (VI), как и прочие оксиды железа (см. выше).

5. Железная окалина проявляет окислительные свойства .

Например , оксид железа (II, III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II):

Также железная окалина восстанавливается водородом:

Оксид железа (II, III) реагирует с более активными металлами .

Например , с алюминием (алюмотермия):

Оксид железа (II, III) реагирует также с некоторыми другими сильными восстановителями (йодидами и сульфидами).

Например , с йодоводородом:

Гидроксид железа (II)

Способы получения

1. Гидроксид железа (II) можно получить действием раствора аммиака на соли железа (II).

Например , хлорид железа (II) реагирует с водным раствором аммиака с образованием гидроксида железа (II) и хлорида аммония:

2. Гидроксид железа (II) можно получить действием щелочи на соли железа (II).

Например , хлорид железа (II) реагирует с гидроксидом калия с образованием гидроксида железа (II) и хлорида калия:

FeCl2 + 2KOH → Fe(OH)2↓ + 2KCl

Химические свойства

1. Гидроксид железа (II) проявляется основные свойства , а именно реагирует с кислотами . При этом образуются соответствующие соли.

Например , гидроксид железа (II) взаимодействует с соляной кислотой с образованием хлорида железа (II):

2. Гидроксид железа (II) взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид железа (II) взаимодействует с оксидом серы (VI) с образованием сульфата железа (II):

3. Гидроксид железа (II) проявляет сильные восстановительные свойства , и реагирует с окислителями. При этом образуются соединения железа (III) .

Например , гидроксид железа (II) взаимодействует с кислородом в присутствии воды:

Гидроксид железа (II) взаимодействует с пероксидом водорода:

При растворении Fe(OH)2 в азотной или концентрированной серной кислотах образуются соли железа (III):

4. Г идроксид железа (II) разлагается при нагревании :

Гидроксид железа (III)

Способы получения

1. Гидроксид железа (III) можно получить действием раствора аммиака на соли железа (III).

Например , хлорид железа (III) реагирует с водным раствором аммиака с образованием гидроксида железа (III) и хлорида аммония:

2. Окислением гидроксида железа (II) кислородом или пероксидом водорода:

3. Гидроксид железа (III) можно получить действием щелочи на раствор соли железа (III).

Например , хлорид железа (III) реагирует с раствором гидроксида калия с образованием гидроксида железа (III) и хлорида калия:

FeCl3 + 3KOH → Fe(OH)3↓ + 3KCl

Видеоопыт получения гидроксида железа (III) взаимодействием хлорида железа (III) и гидроксида калия можно посмотреть здесь.

4. Также гидроксид железа (III) образуется при взаимодействии растворимых солей железа (III) с растворами карбонатов и сульфитов . Карбонаты и сульфиты железа (III) необратимо гидролизуются в водном растворе.

Например: бромид железа (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида железа (III), выделяется углекислый газ и образуется бромид натрия:

Но есть исключение ! Взаимодействие солей железа (III) с сульфитами в ЕГЭ по химии — окислительно-восстановительная реакция. Соединения железа (III) окисляют сульфиты, а также сульфиды и иодиды.

Взаимодействие хлорида железа (III) с сульфитом, например, калия — очень интересная реакция. Во-первых, в некоторых источниках указывается, что в ней таки может протекать необратимый гидролиз. Но для ЕГЭ лучше считать, что при этом протекает ОВР. Во-вторых, ОВР можно записать в разных видах:

Также допустима такая запись:

Химические свойства

1. Гидроксид железа (III) проявляет слабовыраженные амфотерные свойства, с преобладанием основных. Как основание, гидроксид железа (III) реагирует с растворимыми кислотами .

Например , гидроксид железа (III) взаимодействует с азотной кислотой с образованием нитрата железа (III):

2. Гидроксид железа (III) взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид железа (III) взаимодействует с оксидом серы (VI) с образованием сульфата железа (III):

3. Гидроксид железа (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солиферриты, а в растворе реакция практически не идет. При этом гидроксид железа (III) проявляет кислотные свойства.

Например , гидроксид железа (III) взаимодействует с гидроксидом калия в расплаве с образованием феррита калия и воды:

4. Г идроксид железа (III) разлагается при нагревании :

Видеоопыт взаимодействия гидроксида железа (III) с соляной кислотой можно посмотреть здесь.

Соли железа

Нитраты железа

Нитрат железа (II) при нагревании разлагается на оксид железа (III), оксид азота (IV) и кислород:

Нитрат железа (III) при нагревании разлагается также на оксид железа (III), оксид азота (IV) и кислород:

Гидролиз солей железа

Растворимые соли железа, образованные кислотными остатками сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. частично:

I ступень: Fe 3+ + H2O ↔ FeOH 2+ + H +

II ступень: FeOH 2+ + H2O ↔ Fe(OH )2 + + H +

Однако сульфиты и карбонаты железа (III) и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

При взаимодействии соединений железа (III) с сульфидами протекает ОВР:

2FeCl3 + 3Na2S → 2FeS + S + 6NaCl

Более подробно про гидролиз можно прочитать в соответствующей статье.

Окислительные свойства железа (III)

Соли железа (III) под проявляют довольно сильные окислительные свойств. Так, при взаимодействии соединений железа (III) с сульфидами протекает окислительно-восстановительная реакция.

Например : хлорид железа (III) взаимодействует с сульфидом натрия. При этом образуется сера, хлорид натрия и либо черный осадок сульфида железа (II) (в избытке сульфида натрия), либо хлорид железа (II) (в избытке хлорида железа (III)):

2FeCl3 + 3Na2S → 2FeS + S + 6NaCl

2FeCl3 + Na2S → 2FeCl2 + S + 2NaCl

По такому же принципу соли железа (III) реагируют с сероводородом:

2FeCl3 + H2S → 2FeCl2 + S + 2HCl

Соли железа (III) также вступают в окислительно-восстановительные реакции с йодидами .

Например , хлорид железа (III) взаимодействует с йодидом калия. При этом образуются хлорид железа (II), молекулярный йод и хлорид калия:

2FeCl3 + 2KI → 2FeCl2 + I2 + 2KCl

Интерес представляют также реакции солей железа (III) с металлами. Мы знаем, что более активные металлы вытесняют из солей менее активные металлы . Иначе говоря, металлы, которые стоят в электрохимическом ряду левее, могут взаимодействовать с солями металлов, которые расположены в этом ряду правее . Исходя из этого правила, соли железа могут взаимодействовать только с металлами, которые расположены до железа. И они взаимодействуют.

Однако, соли железа со степенью окисления +3 в этом ряду являются небольшим исключением. Ведь для железа характерны две степени окисления: +2 и +3. И железо со степенью окисления +3 является более сильным окислителем. Таким образом, условно говоря, железо со степенью окисления +3 расположено в ряду активности после меди. И соли железа (III) могут реагировать еще и с металлами, которые расположены правее железа! Но до меди, включительно. Вот такой парадокс.

И еще один момент. Соединения железа (III) с этими металлами реагировать будут, а вот соединения железа (II) с ними реагировать не будут. Таким образом, металлы, расположенные в ряду активности между железом и медью (включая медь) при взаимодействии с солями железа (III) восстанавливают железо до степени окисления +2. А вот металлы, расположенные до железа в ряду активности, могут восстановить железо и до простого вещества.

Например , хлорид железа (III) взаимодействует с медью. При этом образуются хлорид железа (II) и хлорид меди (II):

А вот реакция нитрата железа (III) с цинком протекает уже по привычному механизму. И железо восстанавливается до простого вещества:

🌟 Видео

96. Пассивация железа концентрированной азотной кислотойСкачать

96. Пассивация железа концентрированной азотной кислотой

Азотная кислота. Физические и химические свойства азотной кислоты. Подготовка к ЕГЭ по химии | ХимияСкачать

Азотная кислота. Физические и химические свойства азотной кислоты. Подготовка к ЕГЭ по химии | Химия

Взаимодействие железа с концентрированной азотной кислотой | ЕГЭ по химииСкачать

Взаимодействие железа с концентрированной азотной кислотой | ЕГЭ по химии

Реакция железа с азотной кислотойСкачать

Реакция железа с азотной кислотой

Травим железо азотной кислотой часть 2Скачать

Травим железо азотной кислотой часть 2

Пассивация железа азотной кислотойСкачать

Пассивация железа азотной кислотой

Химия 9 класс (Урок№15 - Азотная кислота. Строение молекулы.Соли азотной кислоты.Азотные удобрения.)Скачать

Химия 9 класс (Урок№15 - Азотная кислота. Строение молекулы.Соли азотной кислоты.Азотные удобрения.)

ВСЕ РЕАКЦИИ С АЗОТОМ И ЕГО СОЕДИНЕНИЯМИ | ЕГЭ ХИМИЯ 2024| НООСкачать

ВСЕ РЕАКЦИИ С АЗОТОМ И ЕГО СОЕДИНЕНИЯМИ | ЕГЭ ХИМИЯ 2024| НОО

Реакции металлов с азотной кислотой. Химический опытСкачать

Реакции металлов с азотной кислотой. Химический опыт

Травление в азотной кислотеСкачать

Травление в азотной кислоте

Взаимодействие железа с концентрированной азотной кислотойСкачать

Взаимодействие железа с концентрированной азотной кислотой

Реакции 16ти металлов с азотной кислотой разной концентрации Reactions of 16 metals with nitric acidСкачать

Реакции 16ти металлов с азотной кислотой разной концентрации Reactions of 16 metals with nitric acid

Азотная кислота на ОГЭ по химии | ОГЭ 2023 | УмскулСкачать

Азотная кислота на ОГЭ по химии | ОГЭ 2023 | Умскул

Азотная кислота и металлы за 13 минут | ХИМИЯ ЕГЭ | СОТКАСкачать

Азотная кислота и металлы за 13 минут | ХИМИЯ ЕГЭ | СОТКА

Взаимодействие железа с концентрированными кислотамиСкачать

Взаимодействие железа с концентрированными кислотами

Азотная кислота. Физические и химические свойства. 9 класс.Скачать

Азотная кислота. Физические и химические свойства. 9 класс.

Медь и азотная кислота 🧑‍🔬Скачать

Медь и азотная кислота 🧑‍🔬
Поделиться или сохранить к себе: