В этой статье собрана информация, необходимая для решения задачи составления уравнения плоскости, проходящей через заданную прямую и заданную точку. После решения этой задачи в общем виде мы приведем развернутые решения примеров на составление уравнения плоскости, которая проходит через заданную прямую и точку.
Навигация по странице.
- Нахождение уравнения плоскости, проходящей через заданную прямую и заданную точку.
- Примеры составления уравнения плоскости, проходящей через заданную точку и прямую.
- Уравнение плоскости, проходящей через точку и прямую онлайн
- Предупреждение
- Уравнение плоскости, проходящей через точку и прямую − теория, примеры и решения
- Уравнения прямых и плоскостей
- Поверхности и линии первого порядка.
- Параметрические уравнения прямой и плоскости.
- Прямая линия на плоскости.
- Векторные уравнения плоскости и прямой.
- Параллельность плоскостей и прямых на плоскости.
- Уравнения прямой в пространстве.
- 🎬 Видео
Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Нахождение уравнения плоскости, проходящей через заданную прямую и заданную точку.
Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана прямая a и точка , не лежащая на прямой a . Поставим перед собой задачу: получить уравнение плоскости
, проходящей через прямую a и точку М3 .
Сначала покажем, что существует единственная плоскость, уравнение которой нам требуется составить.
Напомним две аксиомы:
- через три различные точки пространства, не лежащие на одной прямой, проходит единственная плоскость;
- если две различные точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.
Из этих утверждений следует, что через прямую и не лежащую на ней точку можно провести единственную плоскость. Таким образом, в поставленной нами задаче через прямую a и точку M3 проходит единственная плоскость , и нам требуется написать уравнение этой плоскости.
Теперь приступим к нахождению уравнения плоскости, проходящей через заданную прямую a и точку .
Если прямая a задана через указание координат двух различных точек М1 и М2 , лежащих на ней, то наша задача сводится к нахождению уравнения плоскости, проходящей через три заданные точки М1 , М2 и М3 .
Если же прямая a задана иначе, то нам сначала придется найти координаты двух точек М1 и М2 , лежащих на прямой a , а уже после этого записать уравнение плоскости, проходящей через три точки М1 , М2 и М3 , которое и будет искомым уравнением плоскости, проходящей через прямую a и точку М3 .
Разберемся, как найти координаты двух различных точек М1 и М2 , лежащих на заданной прямой a .
В прямоугольной системе координат в пространстве любой прямой линии соответствуют некоторые уравнения прямой в пространстве. Будем считать, что способ задания прямой a в условии задачи позволяет получить ее параметрические уравнения прямой в пространстве вида . Тогда, приняв
, имеем точку
, лежащую на прямой a . Придав параметру
отличное от нуля действительное значение, из параметрических уравнений прямой a мы сможем вычислить координаты
точки М2 , также лежащей на прямой a и отличной от точки М1 .
После этого нам останется лишь написать уравнение плоскости, проходящей через три различных и не лежащих на одной прямой точки и
, в виде
.
Итак, мы получили уравнение плоскости, проходящей через заданную прямую a и заданную точку М3 , не лежащую на прямой a .
Видео:11. Прямая в пространстве и ее уравненияСкачать
Примеры составления уравнения плоскости, проходящей через заданную точку и прямую.
Покажем решения нескольких примеров, в которых разберем рассмотренный метод нахождения уравнения плоскости, проходящей через заданную прямую и заданную точку.
Начнем с самого простого случая.
Напишите общее уравнение плоскости, которая проходит через координатную прямую Ox и точку .
Возьмем на координатной прямой Ox две различные точки, например, и
.
Теперь получим уравнение плоскости, проходящей через три точки М1 , М2 и М3 :
Это уравнение является искомым общим уравнением плоскости, проходящей через заданную прямую Ox и точку .
.
Если известно, что плоскость проходит через заданную точку и заданную прямую, и требуется написать уравнение плоскости в отрезках или нормальное уравнение плоскости, то следует сначала получить общее уравнение заданной плоскости, а от него переходить к уравнению плоскости требуемого вида.
Составьте нормальное уравнение плоскости, которая проходит через прямую и точку
.
Сначала напишем общее уравнение заданной плоскости. Для этого найдем координаты двух различных точек, лежащих на прямой . Параметрические уравнения этой прямой имеют вид
. Пусть точка М1 соответствует значению
, а точка М2 —
. Вычисляем координаты точек М1 и М2 :
Теперь мы можем составить общее уравнение прямой, проходящей через точку и прямую
:
Осталось получить требуемый вид уравнения плоскости, умножив обе части полученного уравнения на нормирующий множитель .
.
Итак, нахождение уравнения плоскости, проходящей через заданную точку и заданную прямую, упирается в нахождение координат двух различных точек, лежащих на заданной прямой. В этом часто состоит основная сложность при решении подобных задач. В заключении разберем решение примера на составление уравнения плоскости, проходящей через заданную точку и прямую, которую определяют уравнения двух пересекающихся плоскостей.
В прямоугольной системе координат Oxyz задана точка и прямая a , которая является линией пересечения двух плоскостей
и
. Напишите уравнение плоскости, проходящей через прямую a и точку М3 .
Отталкиваясь от заданных уравнений двух пересекающихся плоскостей и
, получим параметрические уравнения прямой a , чтобы найти координаты двух точек М1 и М2 , лежащих на прямой a . После этого напишем требуемое уравнение плоскости, проходящей через точку М3 и прямую a , как уравнение плоскости, проходящей через три точки М1 , М2 и М3 .
Процесс перехода от уравнений двух плоскостей, пересекающихся по прямой a , к параметрическим уравнениям прямой a подробно описан в статье уравнения прямой – уравнения двух пересекающихся плоскостей. Не будем на этом подробно останавливаться, а запишем лишь итоговый результат . При
получаем точку
, при
— точку
.
Таким образом, уравнение плоскости, проходящей через точку и прямую
, имеет вид
.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Уравнение плоскости, проходящей через точку и прямую онлайн
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и через данную прямую (точка не лежит на этой прямой). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Написать канонические и параметрические уравнения прямой в пространствеСкачать
Уравнение плоскости, проходящей через точку и прямую − теория, примеры и решения
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L:
(1) |
Задача заключается в построении уравнения плоскости α, проходящей через точку M0 и и через прямую L(Рис.1).
Решение. Уравнение плоскости, проходящей через точку M0 и имеющий нормальный вектор n=<A, B, C> имеет следующий вид:
A(x−x0)+B(y−y0)+C(z−z0)=0. | (2) |
Направляющий вектор прямой L имеет вид q=<m, p, l>. Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:
A(x−x1)+B(y−y1)+C(z−z1)=0. | (3) |
Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:
Вычитая уравнение (3) из уравнения (2), получим:
A(x1−x0)+B(y1−y0)+C(z1−z0)=0. | (5) |
Решая совместно уравнения (4) и (5) отностительно коэффициентов A, B, C получим такие значения A, B, C, при которых уравнение (2) проходит через точку M0 и через прямую (1). Для решения систему уравнений (4), (5), запишем их в матричном виде:
(6) |
Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн.
Получив частное решение уравнения (6) и подставив полученные значения A, B, C в (2), получим решение задачи.
(7) |
Решение. Уравнение плоскости α, проходящей через точку M0(x0, y0, z0)=M0(1, 2, 5) и имеющий нормальный вектор n=<A, B, C> представляется формулой (2).
Вычитая уравнение (3) из уравнения (2), получим:
A(x1−x0)+B(y1−y0)+C(z1−z0)=0. | (8) |
Направляющий вектор прямой L имеет следующий вид:
Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:
(10) |
(11) |
Решим систему линейных уравнений (10) и (11) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:
(12) |
Решив однородную систему линейных уравнений (12) используя метод Гаусса, найдем следующее частное решение:
Подставляя значения коэффициентов A, B, C в уравнение плоскости (2), получим:
(13) |
Упростим уравнение (13):
(14) |
Ответ: Уравнение плоскости, проходящей через точку M0(1, 2, 5) и через прямую (7) имеет вид (14).
Пример 2. Найти уравнение плоскости α, проходящую через точку M0(4, 3, −6) и через прямую L, заданной параметрическим уравнением:
(15) |
Решение. Приведем параметрическое уравнение (15) к каноническому виду:
(16) |
Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой:
A(x−x0)+B(y−y0)+C(z−z0)=0. | (17) |
Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1)=(0, 2, 4). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:
A(x−x1)+B(y−y1)+C(z−z1)=0. | (18) |
Вычитая уравнение (18) из уравнения (17), получим:
A(x1−x0)+B(y1−y0)+C(z1−z0)=0. | (19) |
Направляющий вектор прямой L имеет следующий вид:
Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n должен быть ортогональным направляющему вектору прямой L :
Am+Bp+Cl=0. | (20) |
(21) |
(22) |
Решим систему линейных уравнений (21) и (22) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:
(23) |
Решив однородную систему линейных уравнений (23) используя метод Гаусса, найдем следующее частное решение:
Подставляя значения коэффициентов A, B, C в уравнение плоскости (17), получим:
(24) |
Упростим уравнение (24):
(25) |
Уравнение плоскости можно представить более упрощенном виде, умножив на число 23.
(26) |
Ответ: Уравнение плоскости, проходящей через точку M0(4, 3, −6) и через прямую (16) имеет вид (26).
Видео:Видеоурок "Параметрические уравнения прямой"Скачать
Уравнения прямых и плоскостей
Видео:Уравнение плоскости. 11 класс.Скачать
Поверхности и линии первого порядка.
Уравнение первой степени, или линейное уравнение, связывающее координаты точки в пространстве, имеет вид
$$
Ax+By+Cz+D = 0,label
$$
причем предполагается, что коэффициенты при переменных не равны нулю одновременно, то есть (A^+B^+C^ neq 0). Аналогично, линейное уравнение, связывающее координаты точки на плоскости, — это уравнение
$$
Ax+By+C = 0,label
$$
при условии (A^+B^ neq 0).
В школьном курсе доказывается, что в декартовой прямоугольной системе координат уравнения eqref и eqref определяют соответственно плоскость и прямую линию на плоскости. Из теорем о порядке алгебраических линий и поверхностей следует, что то же самое верно и в общей декартовой системе координат. Точнее, имеют место следующие теоремы.
В общей декартовой системе координат в пространстве каждая плоскость может быть задана линейным уравнением
$$
Ax+By+Cz+D = 0.nonumber
$$
Обратно, каждое линейное уравнение в общей декартовой системе координат определяет плоскость.
В общей декартовой системе координат на плоскости каждая прямая может быть задана линейным уравнением
$$
Ax+By+C = 0,nonumber
$$
Обратно, каждое линейное уравнение в общей декартовой системе координат на плоскости определяет прямую.
Эти теоремы полностью решают вопрос об уравнениях плоскости и прямой линии на плоскости. Однако ввиду важности этих уравнений мы рассмотрим их в других формах. При этом будут получены независимые доказательства теорем этого пункта.
Видео:4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать
Параметрические уравнения прямой и плоскости.
Мы будем предполагать, что задана декартова система координат в пространстве (или на плоскости, если мы изучаем прямую в планиметрии). Это, в частности, означает, что каждой точке сопоставлен ее радиус-вектор относительно начала координат.
Рис. 6.1
Вектор (overrightarrow<M_M> = boldsymbol-boldsymbol_), начало которого лежит на прямой, параллелен прямой тогда и только тогда, когда (M) также лежит на прямой. В этом и только этом случае для точки (M) найдется такое число (t), что
$$
boldsymbol-boldsymbol_ = tboldsymbol.label
$$
Наоборот, какое бы число мы ни подставили в формулу eqref в качестве (t), вектор (boldsymbol) в этой формуле определит некоторую точку на прямой.
Уравнение eqref называется векторным параметрическим уравнением прямой, а переменная величина (t), принимающая любые вещественные значения, называется параметром.
Векторное параметрическое уравнение выглядит одинаково и в планиметрии, и в стереометрии, но при разложении по базису оно сводится к двум или трем скалярным уравнениям, смотря по тому, сколько векторов составляют базис.
Получим теперь параметрические уравнения плоскости. Обозначим через (boldsymbol
) и (boldsymbol) ее направляющие векторы, а через (boldsymbol_) — радиус-вектор ее начальной точки (M_). Пусть точка (M) с радиус-вектором (boldsymbol) — произвольная точка пространства (рис. 6.2).
Рис. 6.2
Вектор (overrightarrow<M_M> = boldsymbol-boldsymbol_), начало которого лежит на плоскости, параллелен ей тогда и только тогда, когда его конец (M) также лежит на плоскости. Так как (boldsymbol
) и (boldsymbol) не коллинеарны, в этом и только этом случае (boldsymbol-boldsymbol_) может быть по ним разложен. Поэтому, если точка (M) лежит в плоскости (и только в этом случае), найдутся такие числа (t_) и (t_), что
$$
boldsymbol-boldsymbol_ = t_boldsymbol
+t_boldsymbol.label
$$
Это уравнение называется параметрическим уравнением плоскости. Каждой точке плоскости оно сопоставляет значения двух параметров (t_) и (t_). Наоборот, какие бы числа мы ни подставили как значения (t_) и (t_), уравнение eqref определит некоторую точку плоскости.
Пусть ((x, y, z)) и ((x_, y_, z_)) — координаты точек (M) и (M_) соответственно, а векторы (boldsymbol
) и (boldsymbol) имеют компоненты ((p_, p_, p_)) и ((q_, q_, q_)). Тогда, раскладывая по базису обе части уравнения eqref, мы получим параметрические уравнения плоскости
$$
x-x_ = t_p_+t_q_, y-y_ = t_p_+t_q_, z-z_ = t_p_+t_q_.label
$$
Отметим, что начальная точка и направляющий вектор прямой образуют на ней ее внутреннюю декартову систему координат. Значение параметра (t), соответствующее какой-то точке, является координатой этой точки во внутренней системе координат. Точно так же на плоскости начальная точка и направляющие векторы составляют внутреннюю систему координат, а значения параметров, соответствующие точке, — это ее координаты в этой системе.
Видео:3. Частные случаи общего уравнения плоскости Неполные уравнения плоскостиСкачать
Прямая линия на плоскости.
Поэтому мы можем сформулировать следующее утверждение.
В любой декартовой системе координат на плоскости уравнение прямой с начальной точкой (M_(x_, y_)) и направляющим вектором (boldsymbol(a_, a_)) может быть записано в виде eqref.
Уравнение eqref линейное. Действительно, после преобразования оно принимает вид (a_x-a_y+(a_y_-a_x_) = 0), то есть (Ax+By+C = 0), где (A = a_), (B = -a_) и (C = a_y_-a_x_).
Вектор с координатами ((-B, A)) можно принять за направляющий вектор прямой с уравнением eqref в общей декартовой системе координат, а точку eqref за начальную точку.
Если система координат декартова прямоугольная, то вектор (boldsymbol(A, B)) перпендикулярен прямой с уравнением eqref.
Действительно, в этом случае ((boldsymbol, boldsymbol) = -BA+AB = 0).
Пусть в уравнении прямой (Ax+By+C = 0) коэффициент (B) отличен от нуля. Это означает, что отлична от нуля первая компонента направляющего вектора, и прямая не параллельна оси ординат. В этом случае уравнение прямой можно представить в виде
$$
y = kx+b,label
$$
где (k = -A/B), а (b = -C/B). Мы видим, что к равно отношению компонент направляющего вектора: (k = a_/a_) (рис. 6.3).
Рис. 6.3. k=-1. Прямая y=-x+1/2
Отношение компонент направляющего вектора (a_/a_) называется угловым коэффициентом прямой.
Угловой коэффициент прямой в декартовой прямоугольной системе координат равен тангенсу угла, который прямая образует с осью абсцисс. Угол этот отсчитывается от оси абсцисс в направлении кратчайшего поворота от (boldsymbol_) к (boldsymbol_) (рис. 6.4).
Рис. 6.4. (k=operatornamevarphi = -1). Прямая (y=-x+1/2)
Положив (x = 0) в уравнении eqref, получаем (y = b). Это означает, что свободный член уравнения (b) является ординатой точки пересечения прямой с осью ординат.
Если же в уравнении прямой (B = 0) и ее уравнение нельзя представить в виде eqref, то обязательно (A neq 0). В этом случае прямая параллельна оси ординат и ее уравнению можно придать вид (x = x_), где (x_ = -C/A) — абсцисса точки пересечения прямой с осью абсцисс.
Видео:9 класс, 7 урок, Уравнение прямойСкачать
Векторные уравнения плоскости и прямой.
Параметрическое уравнение плоскости утверждает, что точка (M) лежит на плоскости тогда и только тогда, когда разность ее радиус-вектора и радиус-вектора начальной точки (M_) компланарна направляющим векторам (boldsymbol
) и (boldsymbol). Эту компланарность можно выразить и равенством
$$
(boldsymbol-boldsymbol_, boldsymbol
, boldsymbol) = 0.label
$$
Вектор (boldsymbol = [boldsymbol
, boldsymbol]) — ненулевой вектор, перпендикулярный плоскости. Используя его, мы можем записать уравнение eqref в виде
$$
(boldsymbol-boldsymbol_, boldsymbol) = 0.label
$$
Уравнения eqref и eqref называют векторными уравнениями плоскости. Им можно придать форму, в которую не входит радиус-вектор начальной точки. Например, положив в eqref (D = -(boldsymbol_, boldsymbol)), получим
$$
(boldsymbol, boldsymbol)+D = 0.label
$$
Для прямой на плоскости можно также написать векторные уравнения, аналогичные eqref и eqref,
$$
(boldsymbol-boldsymbol_, boldsymbol) = 0 mbox (boldsymbol, boldsymbol)+C = 0.nonumber
$$
Первое из них выражает тот факт, что вектор (boldsymbol-boldsymbol_) перпендикулярен ненулевому вектору (boldsymbol), перпендикулярному направляющему вектору (boldsymbol), и потому коллинеарен (boldsymbol).
Пусть (x, y, z) — компоненты вектора (boldsymbol) в общей декартовой системе координат. Тогда скалярное произведение ((boldsymbol-boldsymbol_, boldsymbol)) при (boldsymbol neq 0) записывается линейным многочленом (Ax+By+Cz+D), где ((A^+B^+C^ neq 0)).
Обратно, для любого линейного многочлена найдутся такие векторы (boldsymbol_) и (boldsymbol neq 0), что в заданной общей декартовой системе координат (Ax+By+Cz+D = (boldsymbol-boldsymbol_, boldsymbol)).
Первая часть предложения очевидна: подставим разложение вектора (boldsymbol) по базису в данное скалярное произведение:
$$
(xboldsymbol_+yboldsymbol_+zboldsymbol_-boldsymbol_, boldsymbol),nonumber
$$
раскроем скобки и получим многочлен (Ax+By+Cz+D), в котором (D = -(boldsymbol_, boldsymbol)) и
$$
A = (boldsymbol_, boldsymbol), B = (boldsymbol_, boldsymbol), C = (boldsymbol_, boldsymbol)label
$$
(A), (B) и (C) одновременно не равны нулю, так как ненулевой вектор (boldsymbol) не может быть ортогонален всем векторам базиса.
Для доказательства обратного утверждения найдем сначала вектор (boldsymbol) из равенств eqref, считая (A), (B) и (C) заданными. Из ранее доказанного утверждения 10 следует, что
$$
boldsymbol = frac<A[boldsymbol_, boldsymbol_]><(boldsymbol_, boldsymbol_, boldsymbol_)>+frac<B[boldsymbol_, boldsymbol_]><(boldsymbol_, boldsymbol_, boldsymbol_)>+frac<C[boldsymbol_, boldsymbol_]><(boldsymbol_, boldsymbol_, boldsymbol_)>.label
$$
Вектор (boldsymbol_) должен удовлетворять условию (D = -(boldsymbol_, boldsymbol)). Один из таких векторов можно найти в виде (boldsymbol_ = lambda boldsymbol). Подставляя, видим, что (-lambda(boldsymbol, boldsymbol) = D), откуда (boldsymbol_ = -Dboldsymbol/|boldsymbol|^).
Итак, мы нашли векторы (boldsymbol) и (boldsymbol_) такие, что линейный многочлен записывается в виде
$$
x(boldsymbol_, boldsymbol)+y(boldsymbol_, boldsymbol)+z(boldsymbol_, boldsymbol)-(boldsymbol_, boldsymbol),nonumber
$$
который совпадает с требуемым ((boldsymbol-boldsymbol_, boldsymbol)).
Если система координат декартова прямоугольная, то вектор с компонентами (A), (B), (C) является нормальным вектором для плоскости с уравнением (Ax+By+Cz+D = 0).
Это сразу вытекает из формул eqref и доказанного ранее утверждения о нахождении компонент в ортогональном базисе.
Любые два неколлинеарных вектора, удовлетворяющие уравнению eqref, можно принять за направляющие векторы плоскости.
Утверждение 5 нетрудно доказать и непосредственно, рассматривая координаты вектора, параллельного плоскости, как разности соответствующих координат двух точек, лежащих в плоскости.
Все, сказанное о плоскостях, почти без изменений может быть сказано и о прямых на плоскости. В частности, верно следующее утверждение.
Действительно, (alpha_, alpha_), должны быть пропорциональны компонентам — (B), (A) направляющего вектора прямой.
Видео:Видеоурок "Уравнение плоскости по трем точкам"Скачать
Параллельность плоскостей и прямых на плоскости.
Ниже, говоря о параллельных прямых или плоскостях, мы будем считать, что параллельные плоскости (или прямые) не обязательно различны, то есть что плоскость (прямая) параллельна самой себе.
Прямые линии, задаваемые в общей декартовой системе координат уравнениями
$$
Ax+By+C = 0, A_x+B_y+C_ = 0,nonumber
$$
параллельны тогда и только тогда, когда соответствующие коэффициенты в их уравнениях пропорциональны, то есть существует такое число (lambda), что
$$
A_ = lambda A, B_ = lambda B.label
$$
Прямые совпадают в том и только том случае, когда их уравнения пропорциональны, то есть помимо уравнения eqref выполнено (с тем же (lambda)) равенство
$$
C_ = lambda C.label
$$
Первая часть предложения прямо следует из того, что векторы с компонентами ((-B, A)) и ((-B_, A_)) — направляющие векторы прямых.
Докажем вторую часть. В равенствах eqref и eqref (lambda neq 0), так как коэффициенты в уравнении прямой одновременно нулю не равны. Поэтому, если эти равенства выполнены, уравнения эквивалентны и определяют одну и ту же прямую.
Обратно, пусть прямые параллельны. В силу первой части предложения их уравнения должны иметь вид (Ax+By+C = 0) и (lambda(Ax+By)+C_ = 0) при некотором (lambda). Если, кроме того, существует общая точка (M_(x_, y_)) обеих прямых, то (Ax_+By_+C = 0) и (lambda(Ax_+By_)+C_ = 0). Вычитая одно равенство из другого, получаем (C_ = lambda C), как и требовалось.
Плоскости, задаваемые в общей декартовой системе координат уравнениями
$$
Ax+By+Cz+D = 0, A_x+B_y+C_z+D_ = 0nonumber
$$
параллельны тогда и только тогда, когда соответствующие коэффициенты в их уравнениях пропорциональны, то есть существует такое число (lambda), что
$$
A_ = lambda A, B_ = lambda B, C_ = lambda C.label
$$
Плоскости совпадают в том и только том случае, когда их уравнения пропорциональны, то есть помимо уравнений eqref выполнено (с тем же (lambda)) равенство
$$
D_ = lambda D.label
$$
Если плоскости параллельны, то их нормальные векторы (boldsymbol) и (boldsymbol_) коллинеарны, и существует такое число (lambda), что (boldsymbol_ = lambdaboldsymbol). В силу уравнений eqref (A_ = (boldsymbol_, boldsymbol_) = lambda(boldsymbol_, boldsymbol) = lambda A). Аналогично доказываются и остальные равенства eqref. Обратно, если равенства eqref выполнены, то из формулы eqref следует, что (boldsymbol_ = lambdaboldsymbol). Это доказывает первую часть предложения. Вторая его часть доказывается так же, как вторая часть предложения 7.
Условия eqref выражают не что иное, как коллинеарность векторов с компонентами ((A, B)) и ((A_, B_)). Точно так же условия eqref означают коллинеарность векторов с компонентами ((A, B, C)) и ((A_, B_, C_)). Поэтому согласно ранее доказанным этому и этому утверждениям условие параллельности прямых на плоскости можно записать в виде
$$
begin
A& B\
A_& B_
end
= 0,label
$$
а условие параллельности плоскостей — в виде
$$
begin
B& C\
B_& C_
end =
begin
C& A\
C_& A_
end =
begin
A& B\
A_& B_
end
= 0.label
$$
Утверждению 7 можно придать чисто алгебраическую формулировку, если учесть, что координаты точки пересечения прямых — это решение системы, составленной из их уравнений.
При условии eqref система линейных уравнений
$$
Ax+By+C = 0, A_x+B_y+C_ = 0,nonumber
$$
не имеет решений или имеет бесконечно много решений (в зависимости от (C) и (C_). В последнем случае система равносильна одному из составляющих ее уравнений. Если же
$$
begin
A& B\
A_& B_
end
neq 0.nonumber
$$
то при любых (C) и (C_) система имеет единственное решение ((x, y)).
Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Уравнения прямой в пространстве.
Прямая линия в пространстве может быть задана как пересечение двух плоскостей и, следовательно, в общей декартовой системе координат определяется системой уравнений вида
$$
left<begin
Ax+By+Cz+D = 0,\
A_x+B_y+C_z+D_ = 0.
endright.label
$$
Пересечение плоскостей — прямая линия тогда и только тогда, когда они не параллельны, что согласно eqref означает, что хоть один из детерминантов отличен от нуля:
$$
begin
B& C\
B_& C_
end^ +
begin
C& A\
C_& A_
end^ +
begin
A& B\
A_& B_
end^
neq 0.label
$$
Разумеется, систему eqref можно заменить на любую, ей эквивалентную. При этом прямая будет представлена как пересечение двух других проходящих через нее плоскостей.
Вспомним параметрические уравнения прямой eqref. Допустим, что в них ни одна из компонент направляющего вектора не равна нулю. Тогда
$$
t = frac<x-x_><alpha_>, t = frac<y-y_><alpha_>, t = frac<z-z_><alpha_>,nonumber
$$
и мы получаем два равенства
$$
frac<y-y_><alpha_> = frac<z-z_><alpha_>, frac<x-x_><alpha_> = frac<z-z_><alpha_>,label
$$
или, в более симметричном виде,
$$
frac<x-x_><alpha_> = frac<y-y_><alpha_> = frac<z-z_><alpha_>,label
$$
Уравнения eqref представляют прямую как линию пересечения двух плоскостей, первая из которых параллельна оси абсцисс (в ее уравнение не входит переменная (x)), а вторая параллельна оси ординат.
Если обращается в нуль одна из компонент направляющего вектора, например, (alpha_), то уравнения прямой принимают вид
$$
x = x_, frac<y-y_><alpha_> = frac<z-z_><alpha_>,label
$$
Эта прямая лежит в плоскости (x = x_) и, следовательно, параллельна плоскости (x = 0). Аналогично пишутся уравнения прямой, если в нуль обращается не (alpha_), а другая компонента.
Когда равны нулю две компоненты направляющего вектора, например, (alpha_) и (alpha_), то прямая имеет уравнения
$$
x = x_, y = y_.label
$$
Такая прямая параллельна одной из осей координат, в нашем случае — оси аппликат.
Важно уметь находить начальную точку и направляющий вектор прямой, заданной системой линейных уравнений eqref. По условию eqref один из детерминантов отличен от нуля. Допустим для определенности, что (AB_-A_B neq 0). В силу утверждения 9 при любом фиксированном (z) система уравнений будет иметь единственное решение ((x, y)), в котором (x) и (y), разумеется, зависят от (z). Они — линейные многочлены от (z): (x = alpha_z+beta_), (y = alpha_z+beta_).
Не будем доказывать этого, хотя это и не трудно сделать. Для ясности, заменяя (z) на (t), получаем параметрические уравнения прямой
$$
x = alpha_t+beta_, y = alpha_t+beta_, z = t.nonumber
$$
Первые две координаты начальной точки прямой (M_(beta_, beta_, 0)) можно получить, решая систему eqref при значении (z = 0).
Из параметрических уравнений видно, что в этом случае направляющий вектор имеет координаты ((alpha_, alpha_, 1)). Найдем его компоненты в общем виде. Если система координат декартова прямоугольная, векторы с компонентами ((A, B, C)) и (A_, B_, C_) перпендикулярны соответствующим плоскостям, а потому их векторное произведение параллельно прямой eqref, по которой плоскости пересекаются. Вычисляя векторное произведение в ортонормированном базисе, мы получаем компоненты направляющего вектора
$$
begin
B& C\
B_& C_
end,
begin
C& A\
C_& A_
end,
begin
A& B\
A_& B_
end.label
$$
Вектор с компонентами eqref есть направляющий вектор прямой с уравнениями eqref, какова бы ни была декартова система координат.
Согласно утверждению 5 каждый ненулевой вектор, компоненты которого ((alpha_, alpha_, alpha_)) удовлетворяют уравнению (Aalpha_+Balpha_+Calpha_ = 0), параллелен плоскости с уравнением (Ax+By+Cz+D = 0). Если, кроме того, он удовлетворяет уравнению (A_alpha_+B_alpha_+C_alpha_ = 0), то он параллелен и второй плоскости, то есть может быть принят за направляющий вектор прямой. Вектор с компонентами eqref ненулевой в силу неравенства eqref. Непосредственно легко проверить, что его компоненты удовлетворяют обоим написанным выше условиям. На этом доказательство заканчивается.
🎬 Видео
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать
Уравнение плоскости через 2 точки параллельно прямойСкачать
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Уравнение плоскости через 3 точкиСкачать
Параметрические уравнения прямойСкачать
12. Уравнения прямой в пространстве Решение задачСкачать
Лекция 23. Виды уравнений прямой на плоскости.Скачать