Линейное уравнение регрессии имеет вид y=bx+a+ε
Здесь ε — случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β — используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
Для наших данных система уравнений имеет вид:
10a + 356b = 49
356a + 2135b = 9485
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 68.16, a = 11.17
Уравнение регрессии:
y = 68.16 x — 11.17
1. Параметры уравнения регрессии.
Выборочные средние.
1.1. Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:
Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 Y фактором X весьма высокая и прямая.
1.2. Уравнение регрессии (оценка уравнения регрессии).
Линейное уравнение регрессии имеет вид y = 68.16 x -11.17
Коэффициентам уравнения линейной регрессии можно придать экономический смысл. Коэффициент уравнения регрессии показывает, на сколько ед. изменится результат при изменении фактора на 1 ед.
Коэффициент b = 68.16 показывает среднее изменение результативного показателя (в единицах измерения у ) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 68.16.
Коэффициент a = -11.17 формально показывает прогнозируемый уровень у , но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений x , то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения x , можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе — обратная). В нашем примере связь прямая.
1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты. Коэффициент эластичности находится по формуле:
Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
В нашем примере коэффициент эластичности больше 1. Следовательно, при изменении Х на 1%, Y изменится более чем на 1%. Другими словами — Х существенно влияет на Y.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:
Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего Y на 0.9796 среднеквадратичного отклонения этого показателя.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.
Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии.
1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.98 2 = 0.9596, т.е. в 95.96 % случаев изменения x приводят к изменению у . Другими словами — точность подбора уравнения регрессии — высокая. Остальные 4.04 % изменения Y объясняются факторами, не учтенными в модели.
x | y | x 2 | y 2 | x·y | y(x) | (yi— y ) 2 | (y-y(x)) 2 | (xi— x ) 2 | |y — yx|:y |
0.371 | 15.6 | 0.1376 | 243.36 | 5.79 | 14.11 | 780.89 | 2.21 | 0.1864 | 0.0953 |
0.399 | 19.9 | 0.1592 | 396.01 | 7.94 | 16.02 | 559.06 | 15.04 | 0.163 | 0.1949 |
0.502 | 22.7 | 0.252 | 515.29 | 11.4 | 23.04 | 434.49 | 0.1176 | 0.0905 | 0.0151 |
0.572 | 34.2 | 0.3272 | 1169.64 | 19.56 | 27.81 | 87.32 | 40.78 | 0.0533 | 0.1867 |
0.607 | 44.5 | .3684 | 1980.25 | 27.01 | 30.2 | 0.9131 | 204.49 | 0.0383 | 0.3214 |
0.655 | 26.8 | 0.429 | 718.24 | 17.55 | 33.47 | 280.38 | 44.51 | 0.0218 | 0.2489 |
0.763 | 35.7 | 0.5822 | 1274.49 | 27.24 | 40.83 | 61.54 | 26.35 | 0.0016 | 0.1438 |
0.873 | 30.6 | 0.7621 | 936.36 | 26.71 | 48.33 | 167.56 | 314.39 | 0.0049 | 0.5794 |
2.48 | 161.9 | 6.17 | 26211.61 | 402 | 158.07 | 14008.04 | 14.66 | 2.82 | 0.0236 |
7.23 | 391.9 | 9.18 | 33445.25 | 545.2 | 391.9 | 16380.18 | 662.54 | 3.38 | 1.81 |
2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=7 находим tкрит:
tкрит = (7;0.05) = 1.895
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:
S 2 y = 94.6484 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).
Sy = 9.7287 — стандартная ошибка оценки (стандартная ошибка регрессии).
S a — стандартное отклонение случайной величины a.
Sb — стандартное отклонение случайной величины b.
2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя. (a + bxp ± ε) где
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 1 (-11.17 + 68.16*1 ± 6.4554)
(50.53;63.44)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
Индивидуальные доверительные интервалы для Y при данном значении X.
(a + bx i ± ε)
где
xi | y = -11.17 + 68.16xi | εi | ymin | ymax |
0.371 | 14.11 | 19.91 | -5.8 | 34.02 |
0.399 | 16.02 | 19.85 | -3.83 | 35.87 |
0.502 | 23.04 | 19.67 | 3.38 | 42.71 |
0.572 | 27.81 | 19.57 | 8.24 | 47.38 |
0.607 | 30.2 | 19.53 | 10.67 | 49.73 |
0.655 | 33.47 | 19.49 | 13.98 | 52.96 |
0.763 | 40.83 | 19.44 | 21.4 | 60.27 |
0.873 | 48.33 | 19.45 | 28.88 | 67.78 |
2.48 | 158.07 | 25.72 | 132.36 | 183.79 |
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
tкрит = (7;0.05) = 1.895
Поскольку 12.8866 > 1.895, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Поскольку 2.0914 > 1.895, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b — tкрит Sb; b + tкрит Sb)
(68.1618 — 1.895 • 5.2894; 68.1618 + 1.895 • 5.2894)
(58.1385;78.1852)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a — ta)
(-11.1744 — 1.895 • 5.3429; -11.1744 + 1.895 • 5.3429)
(-21.2992;-1.0496)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:
где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=7, Fkp = 5.59
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).
Проверка на наличие автокорреляции остатков.
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция, нежели отрицательная автокорреляция. В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию, можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности: выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.
Обнаружение автокорреляции
1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения ei с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения ei (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скоре всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости ei от ei-1.
- Простая линейная регрессия в EXCEL
- Немного теории и основные понятия
- Предположения линейной регрессионной модели
- Задачи регрессионного анализа
- Оценка неизвестных параметров линейной модели (используя функции MS EXCEL)
- Оценка неизвестных параметров линейной модели (через статистики выборок)
- Оценка неизвестных параметров линейной модели (матричная форма)
- Построение линии регрессии
- Коэффициент детерминации R 2
- Стандартная ошибка регрессии
- Стандартные ошибки и доверительные интервалы для наклона и сдвига
- Проверка значимости взаимосвязи переменных
- Доверительные интервалы для нового наблюдения Y и среднего значения
- Проверка адекватности линейной регрессионной модели
- Линейная парная регрессия
- 💥 Видео
Видео:Эконометрика. Линейная парная регрессияСкачать
Простая линейная регрессия в EXCEL
history 26 января 2019 г.
- Группы статей
- Статистический анализ
Регрессия позволяет прогнозировать зависимую переменную на основании значений фактора. В MS EXCEL имеется множество функций, которые возвращают не только наклон и сдвиг линии регрессии, характеризующей линейную взаимосвязь между факторами, но и регрессионную статистику. Здесь рассмотрим простую линейную регрессию, т.е. прогнозирование на основе одного фактора.
Disclaimer : Данную статью не стоит рассматривать, как пересказ главы из учебника по статистике. Статья не обладает ни полнотой, ни строгостью изложения положений статистической науки. Эта статья – о применении MS EXCEL для целей Регрессионного анализа. Теоретические отступления приведены лишь из соображения логики изложения. Использование данной статьи для изучения Регрессии – плохая идея.
Статья про Регрессионный анализ получилась большая, поэтому ниже для удобства приведены ее разделы:
Примечание : Если прогнозирование переменной осуществляется на основе нескольких факторов, то имеет место множественная регрессия .
Чтобы разобраться, чем может помочь MS EXCEL при проведении регрессионного анализа, напомним вкратце теорию, введем термины и обозначения, которые могут отличаться в зависимости от различных источников.
Примечание : Для тех, кому некогда, незачем или просто не хочется разбираться в теоретических выкладках предлагается сразу перейти к вычислительной части — оценке неизвестных параметров линейной модели .
Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать
Немного теории и основные понятия
Пусть у нас есть массив данных, представляющий собой значения двух переменных Х и Y. Причем значения переменной Х мы можем произвольно задавать (контролировать) и использовать эту переменную для предсказания значений зависимой переменной Y. Таким образом, случайной величиной является только переменная Y.
Примером такой задачи может быть производственный процесс изготовления некого волокна, причем прочность этого волокна (Y) зависит только от рабочей температуры процесса в реакторе (Х), которая задается оператором.
Построим диаграмму рассеяния (см. файл примера лист Линейный ), созданию которой посвящена отдельная статья . Вообще, построение диаграммы рассеяния для целей регрессионного анализа де-факто является стандартом.
СОВЕТ : Подробнее о построении различных типов диаграмм см. статьи Основы построения диаграмм и Основные типы диаграмм .
Приведенная выше диаграмма рассеяния свидетельствует о возможной линейной взаимосвязи между Y от Х: очевидно, что точки данных в основном располагаются вдоль прямой линии.
Примечание : Наличие даже такой очевидной линейной взаимосвязи не может являться доказательством о наличии причинной взаимосвязи переменных. Наличие причинной взаимосвязи не может быть доказано на основании только анализа имеющихся измерений, а должно быть обосновано с помощью других исследований, например теоретических выкладок.
Примечание : Как известно, уравнение прямой линии имеет вид Y = m * X + k , где коэффициент m отвечает за наклон линии ( slope ), k – за сдвиг линии по вертикали ( intercept ), k равно значению Y при Х=0.
Предположим, что мы можем зафиксировать переменную Х ( рабочую температуру процесса ) при некотором значении Х i и произвести несколько наблюдений переменной Y ( прочность нити ). Очевидно, что при одном и том же значении Хi мы получим различные значения Y. Это обусловлено влиянием других факторов на Y. Например, локальные колебания давления в реакторе, концентрации раствора, наличие ошибок измерения и др. Предполагается, что воздействие этих факторов имеет случайную природу и для каждого измерения имеются одинаковые условия проведения эксперимента (т.е. другие факторы не изменяются).
Полученные значения Y, при заданном Хi, будут колебаться вокруг некого значения . При увеличении количества измерений, среднее этих измерений, будет стремиться к математическому ожиданию случайной величины Y (при Х i ) равному μy(i)=Е(Y i ).
Подобные рассуждения можно привести для любого значения Хi.
Чтобы двинуться дальше, воспользуемся материалом из раздела Проверка статистических гипотез . В статье о проверке гипотезы о среднем значении генеральной совокупности в качестве нулевой гипотезы предполагалось равенство неизвестного значения μ заданному μ0.
В нашем случае простой линейной регрессии в качестве нулевой гипотезы предположим, что между переменными μy(i) и Хi существует линейная взаимосвязь μ y(i) =α* Х i +β. Уравнение μ y(i) =α* Х i +β можно переписать в обобщенном виде (для всех Х и μ y ) как μ y =α* Х +β.
Для наглядности проведем прямую линию соединяющую все μy(i).
Данная линия называется регрессионной линией генеральной совокупности (population regression line), параметры которой ( наклон a и сдвиг β ) нам не известны (по аналогии с гипотезой о среднем значении генеральной совокупности , где нам было неизвестно истинное значение μ).
Теперь сделаем переход от нашего предположения, что μy=a* Х + β , к предсказанию значения случайной переменной Y в зависимости от значения контролируемой переменной Х. Для этого уравнение связи двух переменных запишем в виде Y=a*X+β+ε, где ε — случайная ошибка, которая отражает суммарный эффект влияния других факторов на Y (эти «другие» факторы не участвуют в нашей модели). Напомним, что т.к. переменная Х фиксирована, то ошибка ε определяется только свойствами переменной Y.
Уравнение Y=a*X+b+ε называют линейной регрессионной моделью . Часто Х еще называют независимой переменной (еще предиктором и регрессором , английский термин predictor , regressor ), а Y – зависимой (или объясняемой , response variable ). Так как регрессор у нас один, то такая модель называется простой линейной регрессионной моделью ( simple linear regression model ). α часто называют коэффициентом регрессии.
Предположения линейной регрессионной модели перечислены в следующем разделе.
Видео:Парная регрессия: линейная зависимостьСкачать
Предположения линейной регрессионной модели
Чтобы модель линейной регрессии Yi=a*Xi+β+ε i была адекватной — требуется:
- Ошибки ε i должны быть независимыми переменными;
- При каждом значении Xi ошибки ε i должны быть иметь нормальное распределение (также предполагается равенство нулю математического ожидания, т.е. Е[ε i ]=0);
- При каждом значении Xi ошибки ε i должны иметь равные дисперсии (обозначим ее σ 2 ).
Примечание : Последнее условие называется гомоскедастичность — стабильность, гомогенность дисперсии случайной ошибки e. Т.е. дисперсия ошибки σ 2 не должна зависеть от значения Xi.
Используя предположение о равенстве математического ожидания Е[ε i ]=0 покажем, что μy(i)=Е[Yi]:
Е[Yi]= Е[a*Xi+β+ε i ]= Е[a*Xi+β]+ Е[ε i ]= a*Xi+β= μy(i), т.к. a, Xi и β постоянные значения.
Дисперсия случайной переменной Y равна дисперсии ошибки ε, т.е. VAR(Y)= VAR(ε)=σ 2 . Это является следствием, что все значения переменной Х являются const, а VAR(ε)=VAR(ε i ).
Видео:Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать
Задачи регрессионного анализа
Для проверки гипотезы о линейной взаимосвязи переменной Y от X делают выборку из генеральной совокупности (этой совокупности соответствует регрессионная линия генеральной совокупности , т.е. μy=a* Х +β). Выборка будет состоять из n точек, т.е. из n пар значений .
На основании этой выборки мы можем вычислить оценки наклона a и сдвига β, которые обозначим соответственно a и b . Также часто используются обозначения â и b̂.
Далее, используя эти оценки, мы также можем проверить гипотезу: имеется ли линейная связь между X и Y статистически значимой?
Первая задача регрессионного анализа – оценка неизвестных параметров ( estimation of the unknown parameters ). Подробнее см. раздел Оценки неизвестных параметров модели .
Вторая задача регрессионного анализа – Проверка адекватности модели ( model adequacy checking ).
Примечание : Оценки параметров модели обычно вычисляются методом наименьших квадратов (МНК), которому посвящена отдельная статья .
Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать
Оценка неизвестных параметров линейной модели (используя функции MS EXCEL)
Неизвестные параметры простой линейной регрессионной модели Y=a*X+β+ε оценим с помощью метода наименьших квадратов (в статье про МНК подробно описано этот метод ).
Для вычисления параметров линейной модели методом МНК получены следующие выражения:
Таким образом, мы получим уравнение прямой линии Y= a *X+ b , которая наилучшим образом аппроксимирует имеющиеся данные.
Примечание : В статье про метод наименьших квадратов рассмотрены случаи аппроксимации линейной и квадратичной функцией , а также степенной , логарифмической и экспоненциальной функцией .
Оценку параметров в MS EXCEL можно выполнить различными способами:
Сначала рассмотрим функции НАКЛОН() , ОТРЕЗОК() и ЛИНЕЙН() .
Пусть значения Х и Y находятся соответственно в диапазонах C 23: C 83 и B 23: B 83 (см. файл примера внизу статьи).
Примечание : Значения двух переменных Х и Y можно сгенерировать, задав тренд и величину случайного разброса (см. статью Генерация данных для линейной регрессии в MS EXCEL ).
В MS EXCEL наклон прямой линии а ( оценку коэффициента регрессии ), можно найти по методу МНК с помощью функции НАКЛОН() , а сдвиг b ( оценку постоянного члена или константы регрессии ), с помощью функции ОТРЕЗОК() . В английской версии это функции SLOPE и INTERCEPT соответственно.
Аналогичный результат можно получить с помощью функции ЛИНЕЙН() , английская версия LINEST (см. статью об этой функции ).
Формула =ЛИНЕЙН(C23:C83;B23:B83) вернет наклон а . А формула = ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);2) — сдвиг b . Здесь требуются пояснения.
Функция ЛИНЕЙН() имеет 4 аргумента и возвращает целый массив значений:
ЛИНЕЙН(известные_значения_y; [известные_значения_x]; [конст]; [статистика])
Если 4-й аргумент статистика имеет значение ЛОЖЬ или опущен, то функция ЛИНЕЙН() возвращает только оценки параметров модели: a и b .
Примечание : Остальные значения, возвращаемые функцией ЛИНЕЙН() , нам потребуются при вычислении стандартных ошибок и для проверки значимости регрессии . В этом случае аргумент статистика должен иметь значение ИСТИНА.
Чтобы вывести сразу обе оценки:
- в одной строке необходимо выделить 2 ячейки,
- ввести формулу в Строке формул
- нажать CTRL+SHIFT+ENTER (см. статью про формулы массива ).
Если в Строке формул выделить формулу = ЛИНЕЙН(C23:C83;B23:B83) и нажать клавишу F9 , то мы увидим что-то типа . Это как раз значения a и b . Как видно, оба значения разделены точкой с запятой «;», что свидетельствует, что функция вернула значения «в нескольких ячейках одной строки».
Если требуется вывести параметры линии не в одной строке, а одном столбце (ячейки друг под другом), то используйте формулу = ТРАНСП(ЛИНЕЙН(C23:C83;B23:B83)) . При этом выделять нужно 2 ячейки в одном столбце. Если теперь выделить новую формулу и нажать клавишу F9, то мы увидим что 2 значения разделены двоеточием «:», что означает, что значения выведены в столбец (функция ТРАНСП() транспонировала строку в столбец ).
Чтобы разобраться в этом подробнее необходимо ознакомиться с формулами массива .
Чтобы не связываться с вводом формул массива , можно использовать функцию ИНДЕКС() . Формула = ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);1) или просто ЛИНЕЙН(C23:C83;B23:B83) вернет параметр, отвечающий за наклон линии, т.е. а . Формула =ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);2) вернет параметр b .
Видео:Метод наименьших квадратов. Линейная аппроксимацияСкачать
Оценка неизвестных параметров линейной модели (через статистики выборок)
Наклон линии, т.е. коэффициент а , можно также вычислить через коэффициент корреляции и стандартные отклонения выборок :
= КОРРЕЛ(B23:B83;C23:C83) *(СТАНДОТКЛОН.В(C23:C83)/ СТАНДОТКЛОН.В(B23:B83))
Вышеуказанная формула математически эквивалентна отношению ковариации выборок Х и Y и дисперсии выборки Х:
И, наконец, запишем еще одну формулу для нахождения сдвига b . Воспользуемся тем фактом, что линия регрессии проходит через точку средних значений переменных Х и Y.
Вычислив средние значения и подставив в формулу ранее найденный наклон а , получим сдвиг b .
Видео:Эконометрика Линейная регрессия и корреляцияСкачать
Оценка неизвестных параметров линейной модели (матричная форма)
Также параметры линии регрессии можно найти в матричной форме (см. файл примера лист Матричная форма ).
В формуле символом β обозначен столбец с искомыми параметрами модели: β0 (сдвиг b ), β1 (наклон a ).
Матрица Х равна:
Матрица Х называется регрессионной матрицей или матрицей плана . Она состоит из 2-х столбцов и n строк, где n – количество точек данных. Первый столбец — столбец единиц, второй – значения переменной Х.
Матрица Х T – это транспонированная матрица Х . Она состоит соответственно из n столбцов и 2-х строк.
В формуле символом Y обозначен столбец значений переменной Y.
Чтобы перемножить матрицы используйте функцию МУМНОЖ() . Чтобы найти обратную матрицу используйте функцию МОБР() .
Пусть дан массив значений переменных Х и Y (n=10, т.е.10 точек).
Слева от него достроим столбец с 1 для матрицы Х.
и введя ее как формулу массива в 2 ячейки, получим оценку параметров модели.
Красота применения матричной формы полностью раскрывается в случае множественной регрессии .
Видео:Как найти корни уравнения в Excel с помощью Подбора параметраСкачать
Построение линии регрессии
Для отображения линии регрессии построим сначала диаграмму рассеяния , на которой отобразим все точки (см. начало статьи ).
Для построения прямой линии используйте вычисленные выше оценки параметров модели a и b (т.е. вычислите у по формуле y = a * x + b ) или функцию ТЕНДЕНЦИЯ() .
Формула = ТЕНДЕНЦИЯ($C$23:$C$83;$B$23:$B$83;B23) возвращает расчетные (прогнозные) значения ŷi для заданного значения Хi из столбца В2 .
Примечание : Линию регрессии можно также построить с помощью функции ПРЕДСКАЗ() . Эта функция возвращает прогнозные значения ŷi, но, в отличие от функции ТЕНДЕНЦИЯ() работает только в случае одного регрессора. Функция ТЕНДЕНЦИЯ() может быть использована и в случае множественной регрессии (в этом случае 3-й аргумент функции должен быть ссылкой на диапазон, содержащий все значения Хi для выбранного наблюдения i).
Как видно из диаграммы выше линия тренда и линия регрессии не обязательно совпадают: отклонения точек от линии тренда случайны, а МНК лишь подбирает линию наиболее точно аппроксимирующую случайные точки данных.
Линию регрессии можно построить и с помощью встроенных средств диаграммы, т.е. с помощью инструмента Линия тренда. Для этого выделите диаграмму, в меню выберите вкладку Макет , в группе Анализ нажмите Линия тренда , затем Линейное приближение. В диалоговом окне установите галочку Показывать уравнение на диаграмме (подробнее см. в статье про МНК ).
Построенная таким образом линия, разумеется, должна совпасть с ранее построенной нами линией регрессии, а параметры уравнения a и b должны совпасть с параметрами уравнения отображенными на диаграмме.
Примечание: Для того, чтобы вычисленные параметры уравнения a и b совпадали с параметрами уравнения на диаграмме, необходимо, чтобы тип у диаграммы был Точечная, а не График , т.к. тип диаграммы График не использует значения Х, а вместо значений Х используется последовательность 1; 2; 3; . Именно эти значения и берутся при расчете параметров линии тренда . Убедиться в этом можно если построить диаграмму График (см. файл примера ), а значения Хнач и Хшаг установить равным 1. Только в этом случае параметры уравнения на диаграмме совпадут с a и b .
Видео:Уравнение парной линейной регрессии с помощью Анализа ДанныхСкачать
Коэффициент детерминации R 2
Коэффициент детерминации R 2 показывает насколько полезна построенная нами линейная регрессионная модель .
Предположим, что у нас есть n значений переменной Y и мы хотим предсказать значение yi, но без использования значений переменной Х (т.е. без построения регрессионной модели ). Очевидно, что лучшей оценкой для yi будет среднее значение ȳ. Соответственно, ошибка предсказания будет равна (yi — ȳ).
Примечание : Далее будет использована терминология и обозначения дисперсионного анализа .
После построения регрессионной модели для предсказания значения yi мы будем использовать значение ŷi=a*xi+b. Ошибка предсказания теперь будет равна (yi — ŷi).
Теперь с помощью диаграммы сравним ошибки предсказания полученные без построения модели и с помощью модели.
Очевидно, что используя регрессионную модель мы уменьшили первоначальную (полную) ошибку (yi — ȳ) на значение (ŷi — ȳ) до величины (yi — ŷi).
(yi — ŷi) – это оставшаяся, необъясненная ошибка.
Очевидно, что все три ошибки связаны выражением:
(yi — ȳ)= (ŷi — ȳ) + (yi — ŷi)
Можно показать, что в общем виде справедливо следующее выражение:
или в других, общепринятых в зарубежной литературе, обозначениях:
Total Sum of Squares = Regression Sum of Squares + Error Sum of Squares
Примечание : SS — Sum of Squares — Сумма Квадратов.
Как видно из формулы величины SST, SSR, SSE имеют размерность дисперсии (вариации) и соответственно описывают разброс (изменчивость): Общую изменчивость (Total variation), Изменчивость объясненную моделью (Explained variation) и Необъясненную изменчивость (Unexplained variation).
По определению коэффициент детерминации R 2 равен:
R 2 = Изменчивость объясненная моделью / Общая изменчивость.
Этот показатель равен квадрату коэффициента корреляции и в MS EXCEL его можно вычислить с помощью функции КВПИРСОН() или ЛИНЕЙН() :
R 2 принимает значения от 0 до 1 (1 соответствует идеальной линейной зависимости Y от Х). Однако, на практике малые значения R2 вовсе не обязательно указывают, что переменную Х нельзя использовать для прогнозирования переменной Y. Малые значения R2 могут указывать на нелинейность связи или на то, что поведение переменной Y объясняется не только Х, но и другими факторами.
Видео:Занятие 14. Линейная регрессия в Scikit-learnСкачать
Стандартная ошибка регрессии
Стандартная ошибка регрессии ( Standard Error of a regression ) показывает насколько велика ошибка предсказания значений переменной Y на основании значений Х. Отдельные значения Yi мы можем предсказывать лишь с точностью +/- несколько значений (обычно 2-3, в зависимости от формы распределения ошибки ε).
Теперь вспомним уравнение линейной регрессионной модели Y=a*X+β+ε. Ошибка ε имеет случайную природу, т.е. является случайной величиной и поэтому имеет свою функцию распределения со средним значением μ и дисперсией σ 2 .
Оценив значение дисперсии σ 2 и вычислив из нее квадратный корень – получим Стандартную ошибку регрессии. Чем точки наблюдений на диаграмме рассеяния ближе находятся к прямой линии, тем меньше Стандартная ошибка.
Примечание : Вспомним , что при построении модели предполагается, что среднее значение ошибки ε равно 0, т.е. E[ε]=0.
Оценим дисперсию σ 2 . Помимо вычисления Стандартной ошибки регрессии эта оценка нам потребуется в дальнейшем еще и при построении доверительных интервалов для оценки параметров регрессии a и b .
Для оценки дисперсии ошибки ε используем остатки регрессии — разности между имеющимися значениями yi и значениями, предсказанными регрессионной моделью ŷ. Чем лучше регрессионная модель согласуется с данными (точки располагается близко к прямой линии), тем меньше величина остатков.
Для оценки дисперсии σ 2 используют следующую формулу:
где SSE – сумма квадратов значений ошибок модели ε i =yi — ŷi ( Sum of Squared Errors ).
SSE часто обозначают и как SSres – сумма квадратов остатков ( Sum of Squared residuals ).
Оценка дисперсии s 2 также имеет общепринятое обозначение MSE (Mean Square of Errors), т.е. среднее квадратов ошибок или MSRES (Mean Square of Residuals), т.е. среднее квадратов остатков . Хотя правильнее говорить сумме квадратов остатков, т.к. ошибка чаще ассоциируется с ошибкой модели ε, которая является непрерывной случайной величиной. Но, здесь мы будем использовать термины SSE и MSE, предполагая, что речь идет об остатках.
Примечание : Напомним, что когда мы использовали МНК для нахождения параметров модели, то критерием оптимизации была минимизация именно SSE (SSres). Это выражение представляет собой сумму квадратов расстояний между наблюденными значениями yi и предсказанными моделью значениями ŷi, которые лежат на линии регрессии.
Математическое ожидание случайной величины MSE равно дисперсии ошибки ε, т.е. σ 2 .
Чтобы понять почему SSE выбрана в качестве основы для оценки дисперсии ошибки ε, вспомним, что σ 2 является также дисперсией случайной величины Y (относительно среднего значения μy, при заданном значении Хi). А т.к. оценкой μy является значение ŷi = a * Хi + b (значение уравнения регрессии при Х= Хi), то логично использовать именно SSE в качестве основы для оценки дисперсии σ 2 . Затем SSE усредняется на количество точек данных n за вычетом числа 2. Величина n-2 – это количество степеней свободы ( df – degrees of freedom ), т.е. число параметров системы, которые могут изменяться независимо (вспомним, что у нас в этом примере есть n независимых наблюдений переменной Y). В случае простой линейной регрессии число степеней свободы равно n-2, т.к. при построении линии регрессии было оценено 2 параметра модели (на это было «потрачено» 2 степени свободы ).
Итак, как сказано было выше, квадратный корень из s 2 имеет специальное название Стандартная ошибка регрессии ( Standard Error of a regression ) и обозначается SEy. SEy показывает насколько велика ошибка предсказания. Отдельные значения Y мы можем предсказывать с точностью +/- несколько значений SEy (см. этот раздел ). Если ошибки предсказания ε имеют нормальное распределение , то примерно 2/3 всех предсказанных значений будут на расстоянии не больше SEy от линии регрессии . SEy имеет размерность переменной Y и откладывается по вертикали. Часто на диаграмме рассеяния строят границы предсказания соответствующие +/- 2 SEy (т.е. 95% точек данных будут располагаться в пределах этих границ).
В MS EXCEL стандартную ошибку SEy можно вычислить непосредственно по формуле:
= КОРЕНЬ(СУММКВРАЗН(C23:C83; ТЕНДЕНЦИЯ(C23:C83;B23:B83;B23:B83)) /( СЧЁТ(B23:B83) -2))
или с помощью функции ЛИНЕЙН() :
Примечание : Подробнее о функции ЛИНЕЙН() см. эту статью .
Видео:Коэффициент линейной регрессии, 2 способаСкачать
Стандартные ошибки и доверительные интервалы для наклона и сдвига
В разделе Оценка неизвестных параметров линейной модели мы получили точечные оценки наклона а и сдвига b . Так как эти оценки получены на основе случайных величин (значений переменных Х и Y), то эти оценки сами являются случайными величинами и соответственно имеют функцию распределения со средним значением и дисперсией . Но, чтобы перейти от точечных оценок к интервальным , необходимо вычислить соответствующие стандартные ошибки (т.е. стандартные отклонения ).
Стандартная ошибка коэффициента регрессии a вычисляется на основании стандартной ошибки регрессии по следующей формуле:
где Sx – стандартное отклонение величины х, вычисляемое по формуле:
где Sey – стандартная ошибка регрессии, т.е. ошибка предсказания значения переменой Y ( см. выше ).
В MS EXCEL стандартную ошибку коэффициента регрессии Se можно вычислить впрямую по вышеуказанной формуле:
= КОРЕНЬ(СУММКВРАЗН(C23:C83; ТЕНДЕНЦИЯ(C23:C83;B23:B83;B23:B83)) /( СЧЁТ(B23:B83) -2))/ СТАНДОТКЛОН.В(B23:B83) /КОРЕНЬ(СЧЁТ(B23:B83) -1)
или с помощью функции ЛИНЕЙН() :
Формулы приведены в файле примера на листе Линейный в разделе Регрессионная статистика .
Примечание : Подробнее о функции ЛИНЕЙН() см. эту статью .
При построении двухстороннего доверительного интервала для коэффициента регрессии его границы определяются следующим образом:
где — квантиль распределения Стьюдента с n-2 степенями свободы. Величина а с «крышкой» является другим обозначением наклона а .
Например для уровня значимости альфа=0,05, можно вычислить с помощью формулы =СТЬЮДЕНТ.ОБР.2Х(0,05;n-2)
Вышеуказанная формула следует из того факта, что если ошибки регрессии распределены нормально и независимо, то выборочное распределение случайной величины
является t-распределением Стьюдента с n-2 степенью свободы (то же справедливо и для наклона b ).
Примечание : Подробнее о построении доверительных интервалов в MS EXCEL можно прочитать в этой статье Доверительные интервалы в MS EXCEL .
В результате получим, что найденный доверительный интервал с вероятностью 95% (1-0,05) накроет истинное значение коэффициента регрессии. Здесь мы считаем, что коэффициент регрессии a имеет распределение Стьюдента с n-2 степенями свободы (n – количество наблюдений, т.е. пар Х и Y).
Примечание : Подробнее о построении доверительных интервалов с использованием t-распределения см. статью про построение доверительных интервалов для среднего .
Стандартная ошибка сдвига b вычисляется по следующей формуле:
В MS EXCEL стандартную ошибку сдвига Seb можно вычислить с помощью функции ЛИНЕЙН() :
При построении двухстороннего доверительного интервала для сдвига его границы определяются аналогичным образом как для наклона : b +/- t*Seb.
Видео:Линейная регрессияСкачать
Проверка значимости взаимосвязи переменных
Когда мы строим модель Y=αX+β+ε мы предполагаем, что между Y и X существует линейная взаимосвязь. Однако, как это иногда бывает в статистике, можно вычислять параметры связи даже тогда, когда в действительности она не существует, и обусловлена лишь случайностью.
Единственный вариант, когда Y не зависит X (в рамках модели Y=αX+β+ε), возможен, когда коэффициент регрессии a равен 0.
Чтобы убедиться, что вычисленная нами оценка наклона прямой линии не обусловлена лишь случайностью (не случайно отлична от 0), используют проверку гипотез . В качестве нулевой гипотезы Н 0 принимают, что связи нет, т.е. a=0. В качестве альтернативной гипотезы Н 1 принимают, что a 0.
Ниже на рисунках показаны 2 ситуации, когда нулевую гипотезу Н 0 не удается отвергнуть.
На левой картинке отсутствует любая зависимость между переменными, на правой – связь между ними нелинейная, но при этом коэффициент линейной корреляции равен 0.
Ниже — 2 ситуации, когда нулевая гипотеза Н 0 отвергается.
На левой картинке очевидна линейная зависимость, на правой — зависимость нелинейная, но коэффициент корреляции не равен 0 (метод МНК вычисляет показатели наклона и сдвига просто на основании значений выборки).
Для проверки гипотезы нам потребуется:
- Установить уровень значимости , пусть альфа=0,05;
- Рассчитать с помощью функции ЛИНЕЙН() стандартное отклонение Se для коэффициента регрессии (см. предыдущий раздел );
- Рассчитать число степеней свободы: DF=n-2 или по формуле = ИНДЕКС(ЛИНЕЙН(C24:C84;B24:B84;;ИСТИНА);4;2)
- Вычислить значение тестовой статистики t 0 =a/S e , которая имеет распределение Стьюдента с числом степеней свободы DF=n-2;
- Сравнить значение тестовой статистики |t0| с пороговым значением t альфа ,n-2. Если значение тестовой статистики больше порогового значения, то нулевая гипотеза отвергается ( наклон не может быть объяснен лишь случайностью при заданном уровне альфа) либо
- вычислить p-значение и сравнить его с уровнем значимости .
В файле примера приведен пример проверки гипотезы:
Изменяя наклон тренда k (ячейка В8 ) можно убедиться, что при малых углах тренда (например, 0,05) тест часто показывает, что связь между переменными случайна. При больших углах (k>1), тест практически всегда подтверждает значимость линейной связи между переменными.
Примечание : Проверка значимости взаимосвязи эквивалентна проверке статистической значимости коэффициента корреляции . В файле примера показана эквивалентность обоих подходов. Также проверку значимости можно провести с помощью процедуры F-тест .
Видео:Коэффициент корреляции Пирсона, 2 способа вычисленияСкачать
Доверительные интервалы для нового наблюдения Y и среднего значения
Вычислив параметры простой линейной регрессионной модели Y=aX+β+ε мы получили точечную оценку значения нового наблюдения Y при заданном значении Хi, а именно: Ŷ= a * Хi + b
Ŷ также является точечной оценкой для среднего значения Yi при заданном Хi. Но, при построении доверительных интервалов используются различные стандартные ошибки .
Стандартная ошибка нового наблюдения Y при заданном Хi учитывает 2 источника неопределенности:
- неопределенность связанную со случайностью оценок параметров модели a и b ;
- случайность ошибки модели ε.
Учет этих неопределенностей приводит к стандартной ошибке S(Y|Xi), которая рассчитывается с учетом известного значения Xi.
где SS xx – сумма квадратов отклонений от среднего значений переменной Х:
В MS EXCEL 2010 нет функции, которая бы рассчитывала эту стандартную ошибку , поэтому ее необходимо рассчитывать по вышеуказанным формулам.
Доверительный интервал или Интервал предсказания для нового наблюдения (Prediction Interval for a New Observation) построим по схеме показанной в разделе Проверка значимости взаимосвязи переменных (см. файл примера лист Интервалы ). Т.к. границы интервала зависят от значения Хi (точнее от расстояния Хi до среднего значения Х ср ), то интервал будет постепенно расширяться при удалении от Х ср .
Границы доверительного интервала для нового наблюдения рассчитываются по формуле:
Аналогичным образом построим доверительный интервал для среднего значения Y при заданном Хi (Confidence Interval for the Mean of Y). В этом случае доверительный интервал будет уже, т.к. средние значения имеют меньшую изменчивость по сравнению с отдельными наблюдениями ( средние значения, в рамках нашей линейной модели Y=aX+β+ε, не включают ошибку ε).
Стандартная ошибка S(Yср|Xi) вычисляется по практически аналогичным формулам как и стандартная ошибка для нового наблюдения:
Как видно из формул, стандартная ошибка S(Yср|Xi) меньше стандартной ошибки S(Y|Xi) для индивидуального значения .
Границы доверительного интервала для среднего значения рассчитываются по формуле:
Видео:Как вычислить линейный коэффициент корреляции в MS Excel и построить уравнение регрессии?Скачать
Проверка адекватности линейной регрессионной модели
Модель адекватна, когда все предположения, лежащие в ее основе, выполнены (см. раздел Предположения линейной регрессионной модели ).
Проверка адекватности модели в основном основана на исследовании остатков модели (model residuals), т.е. значений ei=yi – ŷi для каждого Хi. В рамках простой линейной модели n остатков имеют только n-2 связанных с ними степеней свободы . Следовательно, хотя, остатки не являются независимыми величинами, но при достаточно большом n это не оказывает какого-либо влияния на проверку адекватности модели.
Чтобы проверить предположение о нормальности распределения ошибок строят график проверки на нормальность (Normal probability Plot).
В файле примера на листе Адекватность построен график проверки на нормальность . В случае нормального распределения значения остатков должны быть близки к прямой линии.
Так как значения переменной Y мы генерировали с помощью тренда , вокруг которого значения имели нормальный разброс, то ожидать сюрпризов не приходится – значения остатков располагаются вблизи прямой.
Также при проверке модели на адекватность часто строят график зависимости остатков от предсказанных значений Y. Если точки не демонстрируют характерных, так называемых «паттернов» (шаблонов) типа вор о нок или другого неравномерного распределения, в зависимости от значений Y, то у нас нет очевидных доказательств неадекватности модели.
В нашем случае точки располагаются примерно равномерно.
Часто при проверке адекватности модели вместо остатков используют нормированные остатки. Как показано в разделе Стандартная ошибка регрессии оценкой стандартного отклонения ошибок является величина SEy равная квадратному корню из величины MSE. Поэтому логично нормирование остатков проводить именно на эту величину.
SEy можно вычислить с помощью функции ЛИНЕЙН() :
Иногда нормирование остатков производится на величину стандартного отклонения остатков (это мы увидим в статье об инструменте Регрессия , доступного в надстройке MS EXCEL Пакет анализа ), т.е. по формуле:
Вышеуказанное равенство приблизительное, т.к. среднее значение остатков близко, но не обязательно точно равно 0.
Видео:Регрессия в ExcelСкачать
Линейная парная регрессия
1. Линейная парная регрессия
Корреляционная зависимость может быть представлена в виде
В регрессионном анализе рассматривается односторонняя зависимость случайной переменной Y от одной (или нескольких) неслучайной независимой переменной Х . Такая зависимость Y от X (иногда ее называют регрессионной ) может быть также представлена в виде модельного уравнения регрессии Y от X (1). При этом зависимую переменную Y называют также функцией отклика (объясняемой, выходной, результирующей, эндогенной переменной, результативным признаком), а независимую переменную Х – объясняющей (входной, предсказывающей, предикторной, экзогенной переменной, фактором, регрессором, факторным признаком).
Для точного описания уравнения регрессии необходимо знать условный закон распределения зависимой переменной Y при условии, что переменная Х примет значение х , т.е. Х = х . В статистической практике такую информацию получить, как правило, не удается, так как обычно исследователь располагает лишь выборкой пар значений (xi , yi ) ограниченного объема n . В этом случае речь может идти об оценке (приближенном выражении, аппроксимации) по выборке функции регрессии. Такой оценкой является выборочная линия (кривая) регрессии :
= ( x , b 0 , b 1 , …, bp ) (2)
где — условная (групповая) средняя переменной Y при фиксированном значении переменной X = x ; b 0 , b 1 , …, bp – параметры кривой.
Уравнение (2) называется выборочным уравнением регрессии .
В дальнейшем рассмотрим линейную модель и представим ее в виде
= b 0 + b 1 x . (3)
Для решения поставленной задачи определим формулы расчета неизвестных параметров уравнения линейной регрессии (b 0 , b 1 ).
Согласно методу наименьших квадратов (МНК) неизвестные параметры b 0 и b 1 выбираются таким образом, чтобы сумма квадратов отклонений эмпирических значенийyi от значений , найденных по уравнению регрессии (3), была минимальной:
. (4)
На основании необходимого условия экстремума функции двух переменных S = S (b 0 , b 1 ) (4) приравняем к нулю ее частные производные, т.е.
откуда после преобразований получим систему нормальных уравнений для определения параметров линейной регрессии:
(5)
Теперь, разделив обе части уравнений (5) на n , получим систему нормальных уравнений в следующем виде:
(6)
где соответствующие средние определяются по формулам:
; (7) ; (9)
; (8) . (10)
Решая систему (6), найдем
, (11)
где — выборочная дисперсия переменной Х :
, (12)
— выборочный корреляционный момент или выборочная ковариация:
. (13)
Коэффициент b 1 называется выборочным коэффициентом регрессии Y по X .
Коэффициент регрессии Y по X показывает, на сколько единиц в среднем изменяется переменная Y при увеличении переменной X на одну единицу.
Отметим, что из уравнения регрессии следует, что линия регрессии проходит через точку , т.е. = b 0 + b 1 .
На первый взгляд, подходящим измерителем тесноты связи Y от Х является коэффициент регрессии b 1 . Однако b 1 зависит от единиц измерения переменных. Очевидно, что для «исправления» b 1 как показателя тесноты связи нужна такая стандартная система единиц измерения, в которой данные по различным характеристикам оказались бы сравнимы между собой. Если представить уравнение в эквивалентном виде:
. (14)
В этой системе величина называется выборочный коэффициент корреляции и является показателем тесноты связи.
Если r > 0 (b 1 > 0), то корреляционная связь между переменными называется прямой, если r 2 . (20)
4. Возмущения ei и ej не коррелированны:
5. Возмущения ei есть нормально распределенная случайная величина.
Оценкой модели (18) по выборке является уравнение регрессии
= b 0 + b 1 x . Параметры этого уравнения b 0 и b 1 определяются на основе МНК. Воздействие неучтенных случайных факторов и ошибок наблюдений в модели (18) определяется с помощью дисперсии возмущений (ошибок) или остаточной дисперсии (см. табл. 1).
Теорема Гаусса — Маркова . Если регрессионная модель
yi = b0 + b1 xi + ei удовлетворяет предпосылкам 1-5, то оценкиb 0 , b 1 имеют наименьшую дисперсию в классе всех линейных несмещенных оценок.
Таким образом, оценки b 0 и b 1 в определенном смысле являются наиболее эффективными линейными оценками параметров b0 и b1 .
Проверить значимость уравнения регрессии – значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Для проверки значимости выдвигают нулевую гипотезу о надежности параметров. Вспомним основные понятия и определения необходимые для анализа значимости параметров регрессии.
Статистическая гипотеза – это предположение о свойствах случайных величин или событий, которое мы хотим проверить по имеющимся данным.
Нулевая гипотеза Н 0 – это основное проверяемое предположение, которое обычно формулируется как отсутствие различий, отсутствие влияние фактора, отсутствие эффекта, равенство нулю значений выборочных характеристик и т.п.
Другое проверяемое предположение (не всегда строго противоположное или обратное первому) называется конкурирующей или альтернативной гипотезой.
Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость проверить ее. Так как проверку производят статистическими методами, то данная проверка называется статистической.
При проверке статистических гипотез возможны ошибки (ошибочные суждения) двух видов:
— можно отвергнуть нулевую гипотезу, когда она на самом деле верна (так называемая ошибка первого рода );
— можно принять нулевую гипотезу, когда она на самом деле не верна (так называемая ошибка второго рода ).
Допустимая вероятность ошибки первого рода может быть равна 5% или 1% (0,05 или 0,01).
Уровень значимости – это вероятность ошибки первого рода при принятии решения (вероятность ошибочного отклонения нулевой гипотезы).
Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия в средних арифметических экспериментальной и контрольной групп настолько значимы (статистически достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:
1-йуровень — 5% (a = 0,05), где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов при строго случайном отборе для каждого эксперимента;
2-й уровень — 1% (a = 0,01), т. е. соответственно допускается риск ошибиться только в одном случае из ста;
3-й уровень — 0,1% (a = 0,01), т. е. допускается риск ошибиться только в одном случае из тысячи.
Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности результатов эксперимента и потому редко используется. В эконометрических исследованиях, не нуждающихся в очень высоком уровне достоверности, представляется разумным принять 5%-й уровень значимости.
Статистика критерия — некоторая функция от исходных данных, по значению которой проверяется нулевая гипотеза. Чаще всего статистика критерия является числовой функцией.
Всякое правило, на основе которого отклоняется или принимается нулевая гипотеза, называется критерием проверки данной гипотезы. Статистический критерий – это случайная величина, которая служит для проверки статистических гипотез.
Критическая область – совокупность значений критерия, при котором нулевую гипотезу отвергают. Область принятия нулевой гипотезы (область допустимых значений) – совокупность значений критерия, при котором нулевую гипотезу принимают. При справедливости нулевой гипотезы вероятность того, что статистика критерия попадает в область принятия нулевой гипотезы должна быть равна 1.
Процедура проверки нулевой гипотезы в общем случае включает следующие этапы:
— задается допустимая вероятность ошибки первого рода (a = 0,05);
— выбирается статистика критерия;
— ищется область допустимых значений;
— по исходным данным вычисляется значение статистики;
— если статистика критерияпринадлежит области принятия нулевой гипотезы, то нулевая гипотеза принимается (корректнее говоря, делается заключение, что исходные данные не противоречат нулевой гипотезе), а в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза. Это основной принцип проверки всех статистических гипотез.
В современных эконометрических программах (например, EViews) используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответствующим статистическим методом. Эти уровни, обозначенные обычно Prob , могут иметь различное числовое выражение в интервале от 0 до 1, например, 0,7, 0,23 или 0,012. Понятно, что в первых двух случаях, полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В последнем случае результаты значимы на уровне двенадцати тысячных.
Если вычисленное значение Р rob превосходит выбранный уровень Р rob кр , то принимается нулевая гипотеза, а в противном случае — альтернативная гипотеза. Чем меньше вычисленное значение Р rob , тем более исходные данные противоречат нулевой гипотезе.
Число степеней свободы у какого-либо параметра определяют как размер выборки, по которой рассчитан данный параметр, минус количество выбранных переменных.
Величина W называется мощностью критерия и представляет собой вероятность отклонения неверной нулевой гипотезы, т.е. вероятность правильного решения. Мощность критерия – вероятность попадания критерия в критическую область при условии, что справедлива альтернативная гипотеза. Чем больше W , тем вероятность ошибки второго рода меньше.
Коэффициент регрессии (b 1 ) является случайной величиной. Отсюда после вычисления возникает необходимость проверки гипотезы о значимости полученного значения. Выдвигаем нулевую гипотеза (Н 0 ) о равенстве нулю коэффициента регрессии (Н 0 :b 1 = 0) против альтернативной гипотезы (Н 1 ) о неравенстве нулю коэффициента регрессии (Н 1 :b 1 ¹ 0). Для проверки гипотезы Н 0 против альтернативы используется t -статистика, которая имеет распределение Стьюдента с (n — 2) степенями свободы (парная линейная регрессия).
Коэффициент регрессии надежно отличается от нуля (отвергается нулевая гипотеза Н0 ), если t набл > t a ; n -2 . В этом случае вероятность нулевой гипотезы (Prob . ) будет меньше выбранного уровня значимости. t a ; n -2 — критическая точка, определяемая по математико-статистическим таблицам.
Проверка значимости уравнения регрессии производится на основе дисперсионного анализа.
Согласно основной идее дисперсионного анализа
(22)
где Q – общая сумма квадратов отклонений зависимой переменной от средней, а QR и Qe – соответственно сумма квадратов, обусловленная регрессией, и остаточная сумма квадратов, характеризующая влияние неучтенных факторов.
Схема дисперсионного анализа имеет вид, представленный в табл. 1.
Средние квадраты и s 2 (табл. 1) представляют собой несмещенные оценки дисперсий зависимой переменной, обусловленных соответственно регрессией или объясняющей переменной Х и воздействием неучтенных случайных факторов и ошибок; m – число оцениваемых параметров уравнения регрессии; п – число наблюдений.
При отсутствии линейной зависимости между зависимой и объясняющими(ей) переменными случайные величины и имеют c 2 -распределение соответственно с т – 1 и п – т степенями свободы.
Компоненты дисперсии | Сумма квадратов | Число степеней свободы | Средние квадраты |
Регрессия | m – 1 | ||
Остаточная | n – m | ||
Общая | n – 1 |
Поэтому уравнение регрессии значимо на уровне a, если фактически наблюдаемое значение статистики
, (24)
где — табличное значение F -критерия Фишера-Снедекора, определяемое на уровне значимости a при k 1 = m – 1 и k 2 = n – m степенях свободы.
Учитывая смысл величин и s 2 , можно сказать, что значение F показывает, в какой мере регрессия лучше оценивает значение зависимой переменной по сравнению с ее средней.
Для парной линейно регрессии т = 2, и уравнение регрессии значимо на уровне a (отвергается нулевая гипотеза), если
. (25)
Следует отметить, что значимость уравнения парной линейной регрессии может быть проведена и другим способом, если оценить значимость коэффициента регрессии b 1 , который имеет
t -распределение Стьюдента с k = n – 2 степенями свободы.
Уравнение парной регрессии или коэффициент регрессии b 1 значимы на уровне a (иначе – гипотеза Н 0 о равенстве параметра b 1 нулю, т.е.
Н 0 :b 1 = 0, отвергается), если фактически наблюдаемое значение статистики
(26)
Коэффициент корреляции r значим на уровне a (Н 0 : r = 0), если
. (27)
Одной из наиболее эффективных оценок адекватности регрессионной модели, мерой качества уравнения регрессии, характеристикой прогностической силы анализируемой регрессионной модели является коэффициент детерминации , определяемый по формуле:
. (28)
Величина R 2 показывает, какая часть (доля) вариации зависимой переменной обусловлена вариацией объясняющей переменной.
В случае парной линейной регрессионной модели коэффициент детерминации равен квадрату корреляции, т.е. R 2 = r 2 .
Доверительный интервал для индивидуальных значений зависимой переменной .
—t 1 – a ; n — 2 × £ £ + t 1 — a ; n — 2 × , (29)
где — оценка дисперсии индивидуальных значений у 0 при х = х 0 .
Доверительный интервал для параметров регрессионной модели .
(30)
По 28 предприятиям концерна изучается зависимость дневной выработки (ед.) у от уровня механизации труда (%) х по следующим данным (табл. 2).
Номер пред-приятия | Уровень механизации, %, х | Дневная выработка, ед., у | Номер пред-приятия | Уровень механизации, %, х | Дневная выработка, ед., у |
1 | 15 | 5 | 15 | 63 | 24 |
2 | 24 | 6 | 16 | 64 | 25 |
3 | 42 | 6 | 17 | 66 | 25 |
4 | 46 | 9 | 18 | 70 | 27 |
5 | 48 | 15 | 19 | 72 | 31 |
6 | 48 | 14 | 20 | 75 | 33 |
7 | 50 | 17 | 21 | 76 | 33 |
8 | 52 | 17 | 22 | 80 | 42 |
9 | 53 | 22 | 23 | 82 | 41 |
10 | 54 | 21 | 24 | 87 | 44 |
11 | 55 | 22 | 25 | 90 | 53 |
12 | 60 | 23 | 26 | 93 | 55 |
13 | 61 | 23 | 27 | 95 | 57 |
14 | 62 | 24 | 28 | 99 | 62 |
При анализе статистических зависимостей широко используются графические методы, которые задают направление его дальнейшего анализа. В Excel для этого можно использовать средство Мастер диаграмм . Для создания диаграммы необходимо выделить данные, запустить мастер диаграмм, выбрать тип и вид диаграммы (для нашего примера тип диаграммы – Точечная), выбрать и уточнить ориентацию диапазона данных и ряда, настроить параметры диаграммы.
Для описания закономерностей в исследуемой выборке наблюдений строится линия тренда .
Для добавления линии тренда в диаграмму необходимо выполнить следующие действия:
1) щелкнуть правой кнопкой мыши по ряду данных;
2) в динамическом меню выбрать команду Добавить линию тренда. На экране появится окно Линия тренда (рис. 2);
3) выбрать вид зависимости регрессии. Для нашего примера тип тренда определим, как Линейный;
4) перейти на вкладку Параметры. В поле Показать уравнение на диаграмме установить подтверждение;
5) в случае необходимости можно задать остальные параметры.
Рис. 2. Диалоговое окно для выбора типа тренда
Изобразим полученную зависимость графически точками координатной плоскости (рис. 3). Такое изображение статистической зависимости называется полем корреляции .
По расположению эмпирических точек можно предполагать наличие линейной корреляционной (регрессионной) зависимости между переменными х и у .
По данным табл. 2 найдем уравнение регрессии у по х . Расчеты произведем в Excel по формулам (7)–(13), промежуточные вычисления представим в табл. 3.
Рис. 3. Поле корреляции
N | X | Y | X*Y | X*X | Y*Y |
1 | 15 | 5 | 75 | 225 | 25 |
2 | 24 | 6 | 144 | 576 | 36 |
3 | 42 | 6 | 252 | 1764 | 36 |
4 | 46 | 9 | 414 | 2116 | 81 |
5 | 48 | 15 | 720 | 2304 | 225 |
6 | 48 | 14 | 672 | 2304 | 196 |
7 | 50 | 17 | 850 | 2500 | 289 |
8 | 52 | 17 | 884 | 2704 | 289 |
9 | 53 | 22 | 1166 | 2809 | 484 |
10 | 54 | 21 | 1134 | 2916 | 441 |
11 | 55 | 22 | 1210 | 3025 | 484 |
12 | 60 | 23 | 1380 | 3600 | 529 |
13 | 61 | 23 | 1403 | 3721 | 529 |
14 | 62 | 24 | 1488 | 3844 | 576 |
15 | 63 | 24 | 1512 | 3969 | 576 |
16 | 64 | 25 | 1600 | 4096 | 625 |
17 | 66 | 25 | 1650 | 4356 | 625 |
18 | 70 | 27 | 1890 | 4900 | 729 |
19 | 72 | 31 | 2232 | 5184 | 961 |
20 | 75 | 33 | 2475 | 5625 | 1089 |
21 | 76 | 33 | 2508 | 5776 | 1089 |
22 | 80 | 42 | 3360 | 6400 | 1764 |
23 | 82 | 41 | 3362 | 6724 | 1681 |
24 | 87 | 44 | 3828 | 7569 | 1936 |
25 | 90 | 53 | 4770 | 8100 | 2809 |
26 | 93 | 55 | 5115 | 8649 | 3025 |
27 | 95 | 57 | 5415 | 9025 | 3249 |
28 | 99 | 62 | 6138 | 9801 | 3844 |
Сумма | 1782 | 776 | 57647 | 124582 | 28222 |
Среднее | 63,64286 | 27,71429 | 2058,821 | 4449,357 | |
Дисперсия | 398,9439 | 239,8469 | b1 | 0,739465 | |
Cov(x,y) | 295,0051 | b0 | -19,3474 |
Итак, уравнение регрессии у по х :
= -19,37 + 0,74x .
Из полученного уравнения регрессии следует, что при увеличении уровня механизации х на 1% выработка у увеличивается в среднем на 0,74 ед.
По исходным данным вычислим коэффициент корреляции.
Расчеты произведем в Excel, промежуточные вычисления см. табл. 3 и формулы (15), (16).
= 0,954,
т.е. связь между переменными тесная.
Оценим на уровне значимости a = 0,05 значимость уравнения регрессии у по х .
1-й способ . Используя данные табл. 4 вычислим необходимые суммы по формулам табл. 1:
= 6715,71 (см. столбец 6);
QR = = 6108,09 (см. столбец 7);
N | X | Y | Yрег | Yi-Yрег | (Yi-Yср)^2 | (Yрег-Yср)^2 | (Xi-Xcp)^2 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
1 | 15 | 5 | -8,25541 | 13,2554 | 515,9388 | 1293,8192 | 2366,12755 |
2 | 24 | 6 | -1,60023 | 7,6002 | 471,5102 | 859,3406 | 1571,55612 |
3 | 42 | 6 | 11,71015 | -5,7101 | 471,5102 | 256,1325 | 468,413265 |
4 | 46 | 9 | 14,66801 | -5,6680 | 350,2245 | 170,2054 | 311,270408 |
5 | 48 | 15 | 16,14694 | -1,1469 | 161,6531 | 133,8035 | 244,69898 |
6 | 48 | 14 | 16,14694 | -2,1469 | 188,0816 | 133,8035 | 244,69898 |
7 | 50 | 17 | 17,62587 | -0,6259 | 114,7959 | 101,7762 | 186,127551 |
8 | 52 | 17 | 19,1048 | -2,1048 | 114,7959 | 74,1233 | 135,556122 |
9 | 53 | 22 | 19,84426 | 2,1557 | 32,6531 | 61,9372 | 113,270408 |
10 | 54 | 21 | 20,58373 | 0,4163 | 45,0816 | 50,8448 | 92,9846939 |
11 | 55 | 22 | 21,32319 | 0,6768 | 32,6531 | 40,8461 | 74,6989796 |
12 | 60 | 23 | 25,02052 | -2,0205 | 22,2245 | 7,2564 | 13,2704082 |
13 | 61 | 23 | 25,75998 | -2,7600 | 22,2245 | 3,8193 | 6,98469388 |
14 | 62 | 24 | 26,49945 | -2,4995 | 13,7959 | 1,4758 | 2,69897959 |
15 | 63 | 24 | 27,23892 | -3,2389 | 13,7959 | 0,2260 | 0,41326531 |
16 | 64 | 25 | 27,97838 | -2,9784 | 7,3673 | 0,0697 | 0,12755102 |
17 | 66 | 25 | 29,45731 | -4,4573 | 7,3673 | 3,0381 | 5,55612245 |
18 | 70 | 27 | 32,41517 | -5,4152 | 0,5102 | 22,0983 | 40,4132653 |
19 | 72 | 31 | 33,8941 | -2,8941 | 10,7959 | 38,1901 | 69,8418367 |
20 | 75 | 33 | 36,1125 | -3,1125 | 27,9388 | 70,5300 | 128,984694 |
21 | 76 | 33 | 36,85196 | -3,8520 | 27,9388 | 83,4971 | 152,69898 |
22 | 80 | 42 | 39,80982 | 2,1902 | 204,0816 | 146,3020 | 267,556122 |
23 | 82 | 41 | 41,28875 | -0,2888 | 176,5102 | 184,2662 | 336,984694 |
24 | 87 | 44 | 44,98608 | -0,9861 | 265,2245 | 298,3149 | 545,556122 |
25 | 90 | 53 | 47,20447 | 5,7955 | 639,3673 | 379,8675 | 694,69898 |
26 | 93 | 55 | 49,42287 | 5,5771 | 744,5102 | 471,2626 | 861,841837 |
27 | 95 | 57 | 50,9018 | 6,0982 | 857,6531 | 537,6608 | 983,270408 |
28 | 99 | 62 | 53,85966 | 8,1403 | 1175,5102 | 683,5807 | 1250,12755 |
Сумма | 1782 | 776 | 0,00 | 6715,7143 | 6108,0879 | 11170,4286 | |
Среднее | 63,64286 | 27,71429 | |||||
b1 | 0,739465 | ||||||
b0 | -19,3474 |
F = = 261,36.
По статистическим таблицам F -распределения F0,05;1;26 = 4,22. Так как
F > F 0,05;1;26 , то уравнение регрессии значимо.
2-й способ . Учитывая, что b 1 = 0,739, = 11170,43
(табл. 4), = =23,37 (табл. 4), по формуле (26)
t = = 16,17.
По таблице t -распределения t 0,95;26 = 2,06. Так как t > t 0,95;26 , то коэффициент регрессии b 1 , а значит, и уравнение парной линейной регрессии значимо.
Найдем коэффициент детерминации и поясним его смысл. Ранее было получено QR = 6108,09, Q = 6715,71. По формуле (28) = 0,9095 (или R 2 = r 2 = 0,954 2 = 0,9095). Это означает, что изменения зависимой переменной у – дневная выработка – на 90% объясняется вариацией объясняющей переменной х – уровнем механизации.
Найдем 95%-ные доверительные интервалы для индивидуального значения прибыли при уровне механизации равной 65%.
Ранее было получено уравнение регрессии
= -19,37 + 0,74x .
Чтобы построить доверительный интервал для индивидуального значения , найдем точечное значение признака = -19,37 + 0,74∙65 = 28,718.
Затем найдем дисперсию оценки:
=23,370 = 0,839
и = 0,916.
Далее искомый доверительный интервал получим по (29):
28,718 – 2,06∙0,916 £ £ 28,718 + 2,06∙0,916
26,832 £ £ 30,604
Таким образом, дневная выработка при уровне механизации равной 65% с надежностью 0,95 находится в пределах от 26,832 ед. до
30,604 ед.
Найдем 95%-ный доверительный интервал для параметра b1 .
0,74 – 2,06 £b1 £ 0,74 + 2,06 ,
т.е. с надежностью 0,95 при изменении уровня механизации x на 1% дневная выработка y будет изменяться на величину, заключенную в интервале от 0,645 до 0,834 (ед.).
Исследуем полученную модель на наличие гетероскедастичности.
Упорядочим п наблюдений по мере возрастания переменной х . Исключим из рассмотрения С = 6 центральных наблюдений (условие
(п —С )/2 = (28 – 6)/2 = 11 > р = 1 выполняется). Разделим совокупность из (п —С ) = (28 – 6) = 22 наблюдений на две группы (соответственно с малыми и большими значениями фактора х по 11 наблюдений) и определим по каждой из групп уравнения регрессии. Для первой группы оно составит = -3,70 + 0,39x . Для второй группы: = 1,16 + 53,11x . Определим остаточные суммы квадратов для первой (S 1 ) и второй (S 2 ) групп. Промежуточные расчеты занесем в табл. 5.
N | X | Y | Yрег = -3,70 + 0,39Х | e=Y-Yрег | e^2 |
1 | 15 | 5 | 2,15 | 2,85 | 8,1225 |
2 | 24 | 6 | 5,66 | 0,34 | 0,1156 |
3 | 42 | 6 | 12,68 | -6,68 | 44,6224 |
4 | 46 | 9 | 14,24 | -5,24 | 27,4576 |
5 | 48 | 15 | 15,02 | -0,02 | 0,0004 |
6 | 48 | 14 | 15,02 | -1,02 | 1,0404 |
7 | 50 | 17 | 15,8 | 1,2 | 1,44 |
8 | 52 | 17 | 16,58 | 0,42 | 0,1764 |
9 | 53 | 22 | 16,97 | 5,03 | 25,3009 |
10 | 54 | 21 | 17,36 | 3,64 | 13,2496 |
S1 | 121,5258 | ||||
N | X | Y | Yрег = -53,11 + 1,16Х | e=Y-Yрег | e^2 |
17 | 66 | 25 | 23,45 | 1,55 | 2,4025 |
18 | 70 | 27 | 28,09 | -1,09 | 1,1881 |
19 | 72 | 31 | 30,41 | 0,59 | 0,3481 |
20 | 75 | 33 | 33,89 | -0,89 | 0,7921 |
21 | 76 | 33 | 35,05 | -2,05 | 4,2025 |
22 | 80 | 42 | 39,69 | 2,31 | 5,3361 |
23 | 82 | 41 | 42,01 | -1,01 | 1,0201 |
24 | 87 | 44 | 47,81 | -3,81 | 14,5161 |
25 | 90 | 53 | 51,29 | 1,71 | 2,9241 |
26 | 93 | 55 | 54,77 | 0,23 | 0,0529 |
27 | 95 | 57 | 57,09 | -0,09 | 0,0081 |
28 | 99 | 62 | 61,73 | 0,27 | 0,0729 |
S 2 | 32,8636 |
Тест ранговой корреляции Спирмэна
Проранжируем значения х i и абсолютные величины остатков в порядке возрастания, расчеты занесем в табл. 6.
Найдем коэффициент ранговой корреляции Спирмэна:
= 0,108.
N | X | Ei | Расчет ранговой корреляции | |||
Ранг Х | Ранг |Ei| | d | d^2 | |||
1 | 15 | 13,27 | 1 | 28 | -27 | 729 |
2 | 24 | 7,61 | 2 | 26 | -24 | 576 |
3 | 42 | -5,71 | 3 | 23 | -20 | 400 |
4 | 46 | -5,67 | 4 | 22 | -18 | 324 |
5 | 48 | -1,15 | 5 | 6 | -1 | 1 |
6 | 48 | -2,15 | 6 | 9 | -3 | 9 |
7 | 50 | -0,63 | 7 | 3 | 4 | 16 |
8 | 52 | -2,11 | 8 | 8 | 0 | 0 |
9 | 53 | 2,15 | 9 | 10 | -1 | 1 |
10 | 54 | 0,41 | 10 | 2 | 8 | 64 |
11 | 55 | 0,67 | 11 | 4 | 7 | 49 |
12 | 60 | -2,03 | 12 | 7 | 5 | 25 |
13 | 61 | -2,77 | 13 | 13 | 0 | 0 |
14 | 62 | -2,51 | 14 | 12 | 2 | 4 |
15 | 63 | -3,25 | 15 | 17 | -2 | 4 |
16 | 64 | -2,99 | 16 | 15 | 1 | 1 |
17 | 66 | -4,47 | 17 | 19 | -2 | 4 |
18 | 70 | -5,43 | 18 | 20 | -2 | 4 |
19 | 72 | -2,91 | 19 | 14 | 5 | 25 |
20 | 75 | -3,13 | 20 | 16 | 4 | 16 |
21 | 76 | -3,87 | 21 | 18 | 3 | 9 |
22 | 80 | 2,17 | 22 | 11 | 11 | 121 |
23 | 82 | -0,31 | 23 | 1 | 22 | 484 |
24 | 87 | -1,01 | 24 | 5 | 19 | 361 |
25 | 90 | 5,77 | 25 | 24 | 1 | 1 |
26 | 93 | 5,55 | 26 | 21 | 5 | 25 |
27 | 95 | 6,07 | 27 | 25 | 2 | 4 |
28 | 99 | 8,11 | 28 | 27 | 1 | 1 |
Сумма | 0, 00 | 3258 |
Найдем t -критерий для ранговой корреляции:
= 0,556.
Сравним полученное значение t r с табличным значением
t 0,95; 26 = 2,06. Так как t r 2 = а + b lnх + и . Проверяется значимость коэффициента регрессии b по t -критерию Стьюдента. Если коэффициент регрессии для уравнения lne 2 окажется статистически значимым, то, следовательно, существует зависимость lne 2 от lnх , т.е. имеет место гетероскедастичность остатков.
Чтобы построить зависимость ln e 2 = а + b lnх введем замены:
ln e 2 = у , lnх = z . Построим линейную регрессию у = а + bz . Для этого воспользуемся пакетом анализа MicrosoftExcel (Сервис + Анализ данных + + Регрессия). В результате получим следующую модель:
ln e 2 = 5,635 — 0,901 lnх .
Проверка уравнения на значимость показывает: R 2 = 0,039; F = 1,056; ta = 1,565 и tb = 1,028. По тесту Парка зависимость дисперсии остатков от х проявляется ненадежно: все параметры статистически нее значимы, R 2 очень низкий, t -критерий и F -статистика меньше табличных значений (t 0,95;26 = 2,06; F 0,05;1;26 = 4,23). Тест Парка показал отсутствие гетероскедастичности.
Тест оценивает зависимость абсолютных значений остатков от значений фактора х в виде функции: |e| = a + b ∙ x c , где с задается определенным числом степени. Для нашего примера используем значения с равные -2;-1; -0,5; 0,5; 1;2.
Для построения моделей регрессий воспользуемся пакетом анализа Microsoft Excel. Получили следующие результаты:
при с = -2 |e| = 2,62 + 2327,52x -2 R 2 = 0,460; F = 22,14
при с = -1 |e| = 0,87 + 153,09x -1 R 2 = 0,360; F = 14,61
при с = -0,5 |e| = -2,40 + 46,10x -0,5 R 2 = 0,271; F = 9,65
при с = 0,5 |e| = 8,58 — 0,62x 0,5 R 2 = 0,090; F = 2,56
при с = 1 |e| = 5,39 — 0,03x R 2 = 0,035; F = 0,945
Из теста Гейзера следует, что абсолютная величина остатков достаточно сильно зависит от х -2 .
💥 Видео
Что такое линейная регрессия? Душкин объяснитСкачать
Линейная регрессияСкачать
ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать
Эконометрика. Нелинейная регрессия: парабола.Скачать
РегрессияСкачать