Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а прямая – ее директрисой. Для вывода уравнения параболы выберем декартову систему координат так, чтобы ее началом была середина перпендикуляра FD, опущенного из фокуса на директрису, а координатные оси располагались параллельно и перпендикулярно директрисе. Пусть длина отрезка FD равна р. Тогда из равенства r = d следует, что поскольку Алгебраическими преобразованиями это уравнение можно привести к виду: y² = 2px , называемому каноническим уравнением параболы. Величина р называется параметромпараболы.
1) Парабола имеет ось симметрии (ось параболы). Точка пересечения параболы с осью называется вершиной параболы. Если парабола задана каноническим уравнением, то ее осью является ось Ох, а вершиной – начало координат.
2)Вся парабола расположена в правой полуплоскости плоскости Оху.
Используя свойства директрис эллипса и гиперболы и определение параболы, можно доказать следующее утверждение: Множество точек плоскости, для которых отношение е расстояния до некоторой фиксированной точки к расстоянию до некоторой прямой есть величина постоянная, представляет собой эллипс (при e 1) или параболу (при е=1).
- Парабола свойства и график квадратичной функции
- Что такое парабола и как она выглядит
- Каноническое уравнение параболы
- Свойства и график квадратичной функции
- Как определить, куда направлены ветви параболы
- Как найти вершину параболы по формуле
- Смещение параболы
- Как строить параболу по квадратному уравнению
- Директриса, эксцентриситет, фокус параболы
- Заключение
- Парабола — свойства, формулы и примеры построения
- Основные определения
- Полезные свойства
- Формула кривой
- Методы нахождения координат вершины
- График функции
- Пример решения
- 🔥 Видео
Видео:§24 Каноническое уравнение параболыСкачать
Парабола свойства и график квадратичной функции
Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.
Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.
Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.
Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Что такое парабола и как она выглядит
Алгебра: под этим термином понимается график квадратичной функции.
Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:
- Любая прямая пересекает на плоскости искомую линию в 2-х точках – так называемые, «нули» (кроме основного экстремума графика).
- Множество точек плоскости ХОY (М), расстояние FM которых до F = расстоянию MN до прямой Где F – фокус, AN – директриса. Эти понятия рассмотрим ниже.
Видео:Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать
Каноническое уравнение параболы
На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.
Каноническое уравнение имеет вид:
где коэффициент p – фокальный параметр параболы (AF).
В алгебре оно запишется иначе:
y = a x2 + b x + c (узнаваемый шаблон: y = x2).
Видео:Парабола (часть 1). Каноническое уравнение параболы. Высшая математика.Скачать
Свойства и график квадратичной функции
Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.
Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.
Видео:Видеоурок "Парабола"Скачать
Как определить, куда направлены ветви параболы
Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.
Видео:Видеоурок "Гипербола"Скачать
Как найти вершину параболы по формуле
Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.
Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.
Формулы нахождения вершины:
Пример.
Имеется функция у = 4 * x2 + 16 * x – 25. Найдём вершины этой функции.
Для такой линии:
- х = -16 / (2 * 4) = -2,
- y = 4 * 4 — 16 * 2 — 25 = 16 — 32 — 25 = -41.
Получаем координаты вершины (-2, -41).
Видео:Лекция 31.3. Кривые второго порядка. Парабола.Скачать
Смещение параболы
Классический случай, когда в квадратичной функции y = a x2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0, 0).
Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.
Пример.
Имеем: b = 2, c = 3.
Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 по оси ординат.
Видео:Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать
Как строить параболу по квадратному уравнению
Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.
Анализируя выражения и уравнения, можно увидеть следующее:
- Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
- Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.
Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:
Для этого нужно приравнять выражение к нулю.
Наличие корней параболы зависит от результата:
- D ˃ 0, то х1, 2 = (-b ± D0,5) / (2 * a),
- D = 0, то х1, 2 = -b / (2 * a),
- D ˂ 0, то нет точек пересечения с вектором ОХ.
Получаем алгоритм построения параболы:
- определить направление ветвей,
- найти координаты вершины,
- найти пересечение с осью ординат,
- найти пересечение с осью абсцисс.
Пример 1.
Дана функция у = х2 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:
- а = 1, следовательно, ветви направлены вверх,
- координаты экстремума: х = (-5) / 2 = 5/2, y = (5/2)2 — 5 * (5/2) + 4 = -15/4,
- с осью ординат пересекается в значении у = 4,
- найдем дискриминант: D = 25 — 16 = 9,
- ищем корни:
- Х1 = (5 + 3) / 2 = 4, (4, 0),
- Х2 = (5 — 3) / 2 = 1, (1, 0).
По полученным точкам можно построить параболу.
Пример 2.
Для функции у = 3 * х2 2 * х 1 нужно построить параболу. Действуем по приведенному алгоритму:
- а = 3, следовательно, ветви направлены вверх,
- координаты экстремума: х = (-2) / 2 * 3 = 1/3, y = 3 * (1/3)2 — 2 * (1/3) — 1 = -4/3,
- с осью у будет пересекаться в значении у = -1,
- найдем дискриминант: D = 4 + 12 = 16. Значит корни:
- Х1 = (2 + 4) / 6 = 1, (1,0),
- Х2 = (2 — 4) / 6 = -1/3, (-1/3, 0).
По полученным точкам можно построить параболу.
Видео:Овчинников А. В. - Аналитическая геометрия - Эллипс, гипербола, параболаСкачать
Директриса, эксцентриситет, фокус параболы
Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).
Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.
Эксцентриситет (константа) = 1.
Видео:Лекция 31.2. Кривые второго порядка. Гипербола.Скачать
Заключение
Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.
Видео:Парабола | Элементы аналитической геометрииСкачать
Парабола — свойства, формулы и примеры построения
Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Основные определения
Параболой называется кривая второго порядка, состоящая из множества точек, которые удалены на равные расстояния от директрисы и вершины. Ее еще называют функцией квадратичного типа. Не следует путать с гиперболой, поскольку она является прямой второго порядка, но ее называют кубической.
Директриса — условная прямая, относительно которой строится кубическая парабола. Она не указывается на чертеже, но полезна при нахождении неизвестных параметров, когда требуется выполнить дополнительное построение.
Вершина (фокус) — ближайшая точка к директрисе. Из нее исходят симметричные ветви кривой, на которой располагаются точки, имеющие одинаковое значение ординат, а их абсциссы равны между собой по модулю и являются противоположными числами.
Полезные свойства
Парабола, как и любое геометрическое тело, обладает определенными свойствами:
- Ветви проходят в зависимости от коэффициента, стоящего перед аргументом старшей степени A: A 0 — вверх.
- Геометрическая фигура, принадлежащая к кривым ll порядка.
- Симметричность.
- Изделия, изготовленные в форме параболы, всегда отражают свет, аккумулируя его в одной точке — вершине.
- Отрезок, соединяющий среднюю точку хорды и точку, где пересекаются прямые-касательные, всегда перпендикулярен директрисе.
- Подобие всех кубических парабол.
Свойства помогают находить некоторые параметры кривой, доказывать утверждения и теоремы. Однако этого недостаточно для решения задач. Следует разобрать математические формы записи параболы.
Формула кривой
Формула параболы — математическая запись, описывающая ее поведение в пространстве. В физико-математических дисциплинах описаны 3 основные формы: каноническая, квадратичная и общая. В первом случае уравнение выглядит у^2=2nх, где у — ордината, х — абсцисса и n — параметр, равный отрезку между директрисой и вершиной кривой.
Следует отметить, что р>0. Чтобы вывести формулу параболы, следует применить алгоритм:
- Записать формулу директрисы. Она параллельна OУ (ординате): х+n/2=0.
- Координаты вершины — (n/2;0).
- Отметить произвольную точку М на одной из ветвей кривой, а затем соединить с вершиной (фокусом — F). В результате получится отрезок FМ.
- Длина FM: FM=[(х-n/2)^2+у^2]^0.5.
- Также FМ записывается при помощи такого тождества: х+n/2.
- Поставить знак равенства между тождествами в четвертом и пятом пунктах: х+n/2=[(х-n/2)^2+у^2]^0.5.
- Возвести обе части во вторую степень, а затем привести подобные коэффициенты: y^2 = 2pn.
Вторая форма математической записи — квадратичная функция. Последняя имеет вид обыкновенного квaдратного трехчлена, т. е. y=Ах^2+Bx+C, где А, В и С — некоторые коэффициенты. Иногда формула рассматривается без дополнительных элементов В и С, т. е. y= ax^2 . В этом случае вершина кривой II порядка находится по формулам:
- Абсцисса: х=-B/2A.
- Ордината: у=-D/2A, где D — значение дискриминанта D=(-B)^2 — 4AC.
Третье представление (уравнение параболы) — общее. Его можно править следующим образом: Ах^2+Вху+Су^2+Dх+Еу+F = 0. Некоторые коэффициенты могут быть эквивалентны нулю. Кроме того, кривая задается также в полярной системе при помощи соотношения n(1+cos(s))=n. В последнем равенстве параметр «n» эквивалентен отрезку, соединяющему директрису и вершину.
Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать
Методы нахождения координат вершины
Очень часто функция квадратичного типа при решении задач может быть представлена в некотором виде, который следует при помощи математических преобразований привести в читабельную форму. Последний термин обозначает, что требуется преобразовать формулу параболы для удобного построения таблицы и схематического представления. Делается эта операция по следующему алгоритму на примере z=t^2 +4t+2:
- Приравнять к нулевому значению (квадратное уравнение): t^2 +4t+2=0.
- Выполнить подготовительную операцию по выделению квадрата: t^2 +4t+2+2=0.
- Выделить формулу сокращенного умножения — квадрат: (t+2)^2 -2=0.
- Перенести «-2» вправо, т. е. (t+2)^2=2.
- Найти вершину исходя из решения тождества без «-2».
- Определить ординату z: z=-(2), т. е. число из правой части выражения, умноженное на -1.
- Вычислить координату фокуса (смещение относительно начала координат): (t;z)=(-2;-2).
Методика позволяет найти фокус без дополнительных формул. Однако существует и другой способ определения вершины, где применяется производная функции:
- Определить производную: z’=2t+4.
- Приравнять z’ к нулевому значению: 2t+4=0.
- Найти корень: t=-2.
- Подставить в первоначальную функцию для нахождения ординаты, т. е. z=-2.
- Координата вершины: (-2;-2). Она совпадает со значением в предыдущем примере.
Существуют программные продукты для нахождения параметров параболы. Названия имеют английскую номенклатуру, т. е. «parabola».
Видео:§25 Исследование канонического уравнения параболыСкачать
График функции
Иногда требуется в заданиях графическое представление функции. Для этого необходимо следовать инструкции:
- Найти вершину любым из способов.
- Рассчитать координаты точек, в которых происходит пересечение с ординатами и абсциссами в прямоугольной системе координат.
- Построить вспомогательную таблицу. Специалисты рекомендуют использовать для схематического построения не менее 4 точек, не считая вершины, а для точного — не менее 10. Кроме того, вершина всегда находится посередине значений таблиц.
- Отметить каждую точку, а затем соединить плавными линиями.
График параболы хорош тем, что позволяет освободиться от большого количества расчетов, поскольку является симметричным. Для таблицы зависимостей достаточно подставить 2 одинаково противоположные величины, а иногда и разные числа превращают значения функции в одинаковые величины.
В первом случае для уравнения z=f^2+1 возможно взять 2 значения аргумента «f» — 1 и -1. При подстановке их в формулу z не изменится, т. е. z1=2 и z2=2. Во втором — 5 и 7 могут давать значение функции, равное 8.
Видео:Лекция 31.1. Кривые второго порядка. ЭллипсСкачать
Пример решения
Для практического применения теоретических знаний о параболе рекомендуется решать задачи. Условие одной из них формулируется следующим образом: дана формула функции параболы f=(t+2)^2 -3t^2+8t-5+3(t-1)^2, для которой необходимо подготовить данные, чтобы построить график в схематическом виде (8 значений). Решать ее следует по следующей методике:
- Раскрыть скобки и привести подобные элементы: f=t^+4t-1.
- Приравнять к 0: t^2+4t-1=0.
- Выделить квадрат: (t+2)^2-5.
- Перенос свободного члена: (t+2)^2=5.
- Вершина с координатами: (-2;-5).
- Вычислить нули функции с абсциссами: t^2+4t-1=0. Корни: t1=-2-(5)^0.5 и t2=-2+(5)^0.5. Координаты: (-2-(5)^0.5;0) и (-2+(5)^0.5;0)
- Нули функции (пересечение оси ординат при t=0): (0+2)^2-5=-1. Координата — (0;-1).
- Построение таблицы.
f | -5 | -3 | -1 | 0 | -5 | 0 | -1 | -3 | -5 |
t | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
Можно приступать к построению графика. Специалисты рекомендуют чертить его при помощи карандаша. Отмечать следует только точки, указанные в таблице. Кроме того, необходимо указать на графике нули функции, а также ее пересечения с ординатой. Ветви искомой параболы будут направлены вверх, поскольку коэффициент при квадрате 1>0.
Таким образом, парабола — кривая ll порядка, которая используется для описания некоторых физических явлений, траекторий движения тел в пространстве, а также для описания квадратичной зависимости между двумя величинами.
🔥 Видео
#198. ЭЛЛИПС, ГИПЕРБОЛА, ПАРАБОЛАСкачать
Аналитическая геометрия, 7 урок, Линии второго порядкаСкачать
Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать
ТЕПЕРЬ ТЫ ЛЕГКО ПОЙМЕШЬ свойства квадратичной функции — ПараболаСкачать