Ответы на учи ру 8 класс алгебра квадратные уравнения и их коэффициенты

Квадратные уравнения (8 класс)

Уравнение называют квадратным, если его можно записать в виде (ax^2+bx+c=0), где (x) неизвестная, (a), (b) и (с) коэффициенты (то есть, некоторые числа, причем (a≠0)).

В первом примере (a=3), (b=-26), (c=5). В двух других (a),(b) и (c) не выражены явно. Но если эти уравнения преобразовать к виду (ax^2+bx+c=0), они обязательно появятся.

Коэффициент (a) называют первым или старшим коэффициентом, (b) – вторым коэффициентом, (c) – свободным членом уравнения.

Видео:СУММА КОЭФФИЦИЕНТОВ: Как решать Квадратные Уравнения по МАТЕМАТИКЕ 8 классСкачать

СУММА КОЭФФИЦИЕНТОВ: Как решать Квадратные Уравнения по МАТЕМАТИКЕ 8 класс

Виды квадратных уравнений

Если в квадратном уравнении присутствуют все три его члена, его называют полным. В ином случае уравнение называется неполным.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Как решать квадратные уравнения

В данной статье мы рассмотрим вопрос решения полных квадратных уравнений. Про решение неполных — смотрите здесь .

Итак, стандартный алгоритм решения полного квадратного уравнения:

    Преобразовать уравнение к виду (ax^2+bx+c=0).

    Выписать значения коэффициентов (a), (b) и (c).
    Пока не отработали решение квадратных уравнений до автоматизма, не пропускайте этот этап! Особенно обратите внимание, что знак перед членом берется в коэффициент. То есть, для уравнения (2x^2-3x+5=0), коэффициент (b=-3), а не (3).

    Вычислить значение дискриминанта по формуле (D=b^2-4ac).

    Решите квадратное уравнение (2x(1+x)=3(x+5))
    Решение:

    Теперь переносим все слагаемые влево, меняя знак.

    Уравнение приняло нужный нам вид. Выпишем коэффициенты.

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_2=frac<-b — sqrt>).

    Решите квадратное уравнение (x^2+9=6x)
    Решение:

    Тождественными преобразованиями приведем уравнение к виду (ax^2+bx+c=0).

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_1=frac<-b — sqrt>).

    В обоих корнях получилось одинаковое значение. Нет смысла писать его в ответ два раза.

    Решите квадратное уравнение (3x^2+x+2=0)
    Решение:

    Уравнение сразу дано в виде (ax^2+bx+c=0), преобразования не нужны. Выписываем коэффициенты.

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_1=frac<-b — sqrt>).

    Оба корня невычислимы, так как арифметический квадратный корень из отрицательного числа не извлекается.

    Обратите внимание, в первом уравнении у нас два корня, во втором – один, а в третьем – вообще нет корней. Это связано со знаком дискриминанта (подробнее смотри тут ).

    Также многие квадратные уравнения могут быть решены с помощью обратной теоремы Виета . Это быстрее, но требует определенного навыка.

    Пример. Решить уравнение (x^2-7x+6=0).
    Решение: Согласно обратной теореме Виета, корнями уравнения будут такие числа, которые в произведении дадут (6), а в сумме (7). Простым подбором получаем, что эти числа: (1) и (6). Это и есть наши корни (можете проверить решением через дискриминант).
    Ответ: (x_1=1), (x_2=6).

    Данную теорему удобно использовать с приведенными квадратными уравнениями, имеющими целые коэффициенты (b) и (c).

    Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

    Реакция на результаты ЕГЭ 2022 по русскому языку

    Конспект урока по теме: «»Неполные квадратные уравнения» с заданиями из учи.ру (8 класс)

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Рабочие листы и материалы для учителей и воспитателей

    Более 300 дидактических материалов для школьного и домашнего обучения

    Тема урока: «Неполные квадратные уравнения»

    1.Сформулировать понятие неполного квадратного уравнения, обучить способам решения неполного квадратного уравнения.

    Научатся выделять среди уравнений квадратные, определять их вид полное/неполное, находить корни неполных квадратных уравнений.

    приветствие, проверка готовности принадлежностей к уроку)

    2.Актуализация знаний учащихся

    1.Самостоятельная работа с последующей проверкой

    2. проверка Д.З.- в форме устной работы

    Слово учителя: Мы начнем наш урок с небольшой самостоятельной работы с целью повторить действие разложения на множители способом вынесения общего множителя за скобки

    Вопрос для подведения итога С.Р. кто может мне сказать какой закон умножения мы использовали при выполнении данной работы?

    Слово учителя: На предыдущем уроке мы с вами сформулировали понятие квадратного уравнения и его коэффициентов.

    1 . Какие уравнения называются квадратными?

    2. Скажите, пожалуйста, важно ли условие, что коэффициент а≠0?

    3. Назовите коэффициенты и свободный член квадратного уравнения -х² +х + =0 .

    4. Что значит решить уравнение?

    5 .Решить уравнения 5х=0

    х²=0, х²=16, х²=5 , х²- 49=0, х²+ 49=0

    какое из этих уравнений не является квадратным? ( правильный ответ: 5х=0)

    Выполняют самостоятельную работу

    Отвечают на вопрос

    ( правильный ответ: распределительный закон умножения относительно действия сложения и вычитания

    отвечают на вопросы

    1.(правильный ответ: уравнения вида ах² +вх +с=0, где а,в,с заданные числа, и а≠0 Х- неизвестное

    2.(правильный ответ: да, при а=0 уравнение не будет квадратным)

    (правильный ответ: найти его корни или установить, что их нет

    правильный ответ: х=0,х=±4,х=±,

    ( правильный ответ: 5х=0)

    СЛАЙД №2 для осуществления последующей проверки

    (правильный ответ: на слайде №3)

    3.Изучение нового материала

    Слово учителя: У английского поэта средних веков Д. Чосера есть рассказ о бедном смышленом студенте, который неплохо разбирался в алхимии, помнил теоремы и частенько удивлял всех своими познаниями .

    Посредством уравнений, теорем

    Он уйму всяких разрешал проблем.

    И засуху предсказывал, и ливни.
    Поистине его познанья дивны.

    А какие проблемы, с помощью уравнений можем решить мы.

    Например представим себе такую ситуацию:

    Саша отдыхал под яблоней. С высоты 5м упало яблоко. Надо узнать, сколько времени будет Саша ждать своего яблока?

    Воспользуемся формулой из учебника по физике.

    С помощью квадратного уравнения мы смогли решить нашу задачу по нахождению времени падения яблока для Саши. Наши знания по математике пригодятся нам как и персонажу данного рассказа в решении наших проблем.

    Тема нашего урока: « Н еполные квадратные уравнения и способы его решения ».

    Главная проблема урока Обучится способам решения неполного квадратного .

    У вас на столе карточки с уравнениям. Их всего 6. Посмотрите внимательно на эти уравнения и распределите их в 3 столбика . Подумайте по какому принципу их можно разложить по 3 столбцам. Работаем в парах . Обсудите друг с другом, почему именно так вы распределяете уравнения.

    Давайте проверим. Я покажу на слайде свой вариант распределения.

    Подумайте и составите математическую модель уравнения каждого

    столбика используя буквенные значения коэффициентов уравнения ВАШИ предложения .

    Таким образом мы получили уравнения одного из следующих видов ах²=0

    ,ах²+с=0 , ах²+вх=0 — такие уравнения называются неполными квадратными уравнениями.

    Сформулируем определение Если в квадратном уравнении ах² + вх + с = 0

    хотя бы один из коэффициентов ( отличный от а ) равен нулю, то такое уравнение называют неполным квадратным уравнением .

    решите самостоятельно уравнения 5х² = 0 и 1,7х²=0

    Сделаем вывод о решении уравнения данного вида и количестве его корней.

    2х² -8=0 и 4х² = -16 при возникновении трудностей можно воспользоваться помощью друга.

    проверим , как вы справились с работой

    Сформулируем вывод о количестве корней данного вида неполного квадратного и способах его решения

    проверим , как вы справились с работой

    Сформулируем вывод о количестве корней данного вида неполного квадратного и способах его решения

    Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Квадратные уравнения

    Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

    Алгоритм решения квадратного уравнения:

    1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
    2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
    3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
    4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
    5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
    6. Если D 0, решений нет: x ∈ ∅

    Примеры решения квадратного уравнения:

    1. − x 2 + 6 x + 7 = 0

    a = − 1, b = 6, c = 7

    D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

    D > 0 – будет два различных корня:

    x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

    Ответ: x 1 = − 1, x 2 = 7

    a = − 1, b = 4, c = − 4

    D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

    D = 0 – будет один корень:

    x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

    a = 2, b = − 7, c = 10

    D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

    D 0 – решений нет.

    Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо c = 0, либо b = c = 0 ). Смотрите видео, как решать такие квадратные уравнения!

    🎥 Видео

    Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

    Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

    Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать

    Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)

    Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

    Как решать квадратные уравнения. 8 класс. Вебинар | Математика

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)Скачать

    Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)

    Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения

    РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19 алгебра 8 классСкачать

    РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19  алгебра 8 класс

    8 класс. Квадратное уравнение и его корни. Алгебра.Скачать

    8 класс. Квадратное уравнение и его корни. Алгебра.

    Как решать неполное квадратное уравнение? 😎Скачать

    Как решать неполное квадратное уравнение? 😎

    СЛОЖИТЕ ДВА КОРНЯСкачать

    СЛОЖИТЕ ДВА КОРНЯ

    АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | ВидеоурокСкачать

    АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | Видеоурок

    ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 классСкачать

    ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 класс

    Решение биквадратных уравнений. 8 класс.Скачать

    Решение биквадратных уравнений. 8 класс.
    Поделиться или сохранить к себе: