Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать
Оценка параметра смещенная
Как видно, оценка параметра при переменной х в короткой модели оказывается смещенной вверх. В то же время точность оценок близка в обоих случаях. [c.287]
Отметим, что при соблюдении прочих предпосылок МНК автокорреляция остатков не влияет на свойства состоятельности и несмещенности оценок параметров уравнения регрессии обычным МНК, за исключением моделей авторегрессии. Применение МНК к моделям авторегрессии ведет к получению смещенных, несостоятельных и неэффективных оценок. [c.280]
Полученная модель есть модель двухфакторной линейной регрессии (точнее — авторегрессии). Определив ее параметры, мы найдем X и оценки параметров а п Ьо исходной модели. Далее с помощью соотношений (7.17) несложно определить параметры b, b2. модели (7.16). Отметим, что применение обычного МНК к оценке параметров модели (7.22) приведет к получению смещенных оценок ее параметров ввиду наличия в этой модели в качестве фактора лаговой результативной переменной yt [c.307]
Однако, как было показано выше, оценка параметра с,, равная 0,440, является смещенной. Для получения несмещенных оценок параметров этого уравнения воспользуемся методом инструментальных переменных. Определим параметры уравнения регрессии (7.43) обычным МНК [c.327]
Если Ek> О, то кривая островершинная, при Ek
Видео:Эконометрика. Линейная парная регрессияСкачать
Итоговые тесты по эконометрике
1. Оценка значимости параметров уравнения регрессии осуществляется на основе:
+а) t — критерия Стьюдента;
б) F — критерия Фишера – Снедекора;
в) средней квадратической ошибки;
г) средней ошибки аппроксимации.
2. Коэффициент регрессии в уравнении , характеризующем связь между объемом реализованной продукции (млн. руб.) и прибылью предприятий автомобильной промышленности за год (млн. руб.) означает, что при увеличении объема реализованной продукции на 1 млн. руб. прибыль увеличивается на:
3. Корреляционное отношение (индекс корреляции) измеряет степень тесноты связи между Х и Y:
а) только при нелинейной форме зависимости;
+б) при любой форме зависимости;
в) только при линейной зависимости.
4. По направлению связи бывают:
5. По 17 наблюдениям построено уравнение регрессии: . Для проверки значимости уравнения вычислено наблюдаемое значение t — статистики: 3.9. Вывод:
+а) Уравнение значимо при a= 0,05;
б) Уравнение незначимо при a = 0,01;
в) Уравнение незначимо при a = 0,05.
6. Каковы последствия нарушения допущения МНК «математическое ожидание регрессионных остатков равно нулю»?
+а) Смещенные оценки коэффициентов регрессии;
б) Эффективные, но несостоятельные оценки коэффициентов регрессии;
в) Неэффективные оценки коэффициентов регрессии;
г) Несостоятельные оценки коэффициентов регрессии.
7. Какое из следующих утверждений верно в случае гетероскедастичности остатков?
+а) Выводы по t и F- статистикам являются ненадежными;
б) Гетероскедастичность проявляется через низкое значение статистики Дарбина-Уотсона;
в) При гетероскедастичности оценки остаются эффективными;
г) Оценки параметров уравнения регрессии являются смещенными.
8. На чем основан тест ранговой корреляции Спирмена?
+а) На использовании t – статистики;
б) На использовании F – статистики;
в) На использовании ;
г) На графическом анализе остатков.
9. На чем основан тест Уайта?
а) На использовании t – статистики;
б) На использовании F – статистики;
+в) На использовании ;
г) На графическом анализе остатков.
10. Каким методом можно воспользоваться для устранения автокорреляции?
+а) Обобщенным методом наименьших квадратов;
б) Взвешенным методом наименьших квадратов;
в) Методом максимального правдоподобия;
г) Двухшаговым методом наименьших квадратов.
11. Как называется нарушение допущения о постоянстве дисперсии остатков?
12. Фиктивные переменные вводятся в:
а) только в линейные модели;
б) только во множественную нелинейную регрессию;
в) только в нелинейные модели;
+г) как в линейные, так и в нелинейные модели, приводимые к линейному виду.
13. Если в матрице парных коэффициентов корреляции встречаются , то это свидетельствует:
+а) О наличии мультиколлинеарности;
б) Об отсутствии мультиколлинеарности;
в) О наличии автокорреляции;
г) Об отсутствии гетероскедастичности.
14. С помощью какой меры невозможно избавиться от мультиколлинеарности?
а) Увеличение объема выборки;
б) Исключения переменных высококоррелированных с остальными;
в) Изменение спецификации модели;
+г) Преобразование случайной составляющей.
15. Если и ранг матрицы А меньше (К-1) то уравнение:
в) точно идентифицировано.
16.Уравнение регрессии имеет вид:
+а) ;
б) ;
в) .
17.В чем состоит проблема идентификации модели?
+а) получение однозначно определенных параметров модели, заданной системой одновременных уравнений;
б) выбор и реализация методов статистического оценивания неизвестных параметров модели по исходным статистическим данным;
в) проверка адекватности модели.
18. Какой метод применяется для оценивания параметров сверхиденцифицированного уравнения?
19. Если качественная переменная имеет k альтернативных значений, то при моделировании используются:
+а) (k-1) фиктивная переменная;
б) k фиктивных переменных;
в) (k+1) фиктивная переменная.
20. Анализ тесноты и направления связей двух признаков осуществляется на основе:
+а) парного коэффициента корреляции;
б) коэффициента детерминации;
в) множественного коэффициента корреляции.
21. В линейном уравнении x=а0+a1х коэффициент регрессии показывает:
а) тесноту связи;
б) долю дисперсии «Y», зависимую от «X»;
+в) на сколько в среднем изменится «Y» при изменении «X» на одну единицу;
г) ошибку коэффициента корреляции.
22. Какой показатель используется для определения части вариации, обусловленной изменением величины изучаемого фактора?
а) коэффициент вариации;
б) коэффициент корреляции;
+в) коэффициент детерминации;
г) коэффициент эластичности.
23. Коэффициент эластичности показывает:
+а) на сколько % изменится значение y при изменении x на 1 %;
б) на сколько единиц своего измерения изменится значение y при изменении x на 1 %;
в) на сколько % изменится значение y при изменении x на ед. своего измерения.
24. Какие методы можно применить для обнаружения гетероскедастичности?
Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать
Оценка параметров линейного регрессионного уравнения
Для оценки параметров регрессионного уравнения наиболее часто используют метод наименьших квадратов (МНК), в основе которого лежит предположение о независимости наблюдений исследуемой совокупности. Сущность данного метода заключается в нахождении параметров модели (α, β), при которых минимизируется сумма квадратов отклонений эмпирических (фактических) значений результативного признака от теоретических, полученных по выбранному уравнению регрессии:
В итоге получаем систему нормальных уравнений:
Эту систему можно записать в виде:
Решая данную систему линейных уравнений с двумя неизвестными получаем оценки наименьших квадратов:
В уравнениях регрессии параметр α показывает усредненное влияние на результативный признак неучтенных факторов, а параметр β – коэффициент регрессии показывает, насколько изменяется в среднем значение результативного признака при увеличении факторного на единицу.
Между линейным коэффициентом корреляции и коэффициентом регрессии существует определенная зависимость, выражаемая формулой:
где – коэффициент регрессии в уравнении связи;
– среднее квадратическое отклонение соответствующего статистически существенного факторного признака.
Имеются следующие данные о размере страховой суммы и страховых возмещений на автотранспортные средства одной из страховых компаний.
Зависимость между размером страховых возмещений и страховой суммой на автотранспорт
Объем страхового возмещения (тыс.долл.), Yi
Стоимость застрахованного автомобиля (тыс.долл.), X i
💥 Видео
Эконометрика. Множественная регрессия и корреляция.Скачать
Множественная регрессияСкачать
3.2 Точечные оценки математического ожидания и дисперсии .Скачать
Эконометрика Линейная регрессия и корреляцияСкачать
Множественная регрессия в ExcelСкачать
Парная регрессия: линейная зависимостьСкачать
Эконометрика. Построение модели множественной регрессии в Excel. Часть 1.Скачать
Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать
Регрессия в ExcelСкачать
Математика #1 | Корреляция и регрессияСкачать
Множественная регрессия в Excel и мультиколлинеарностьСкачать
Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2Скачать
Коэффициент линейной регрессии, 2 способаСкачать
Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)Скачать
Что такое регрессия и какие виды регрессии имеются? Душкин объяснитСкачать
РЕГРЕССИОННЫЙ АНАЛИЗ. Статистика в ТрейдингеСкачать