Оценка статистической значимости уравнения в целом и параметров

Лекция 7. Парная регрессия. Оценка статистической значимости параметров уравнения и модели в целом.

ТЕМА 4. СТАТИСТИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ СВЯЗЕЙ

Уравнение регрессии —этоаналитическое представление корреляционной зависимости. Уравнение регрессии описывает гипотетическую функциональную зависимость между условным средним значением результативного признака и значением признака – фактора (факторов), т.е. основную тенденцию зависимости.

Парная корреляционная зависимость описывается уравнением парной регрессии, множественная корреляционная зависимость – уравнением множественной регрессии.

Признак-результат в уравнении регрессии – это зависимая переменная (отклик, объясняемая переменная), а признак-фактор – независимая переменная (аргумент, объясняющая переменная).

Оценка статистической значимости уравнения в целом и параметровПростейшим видом уравнения регрессии является уравнение парной линейной зависимости:

где y – зависимая переменная (признак-результат); x – независимая переменная (признак-фактор); Оценка статистической значимости уравнения в целом и параметрови Оценка статистической значимости уравнения в целом и параметров– параметры уравнения регрессии; Оценка статистической значимости уравнения в целом и параметров— ошибка оценивания.

В качестве уравнения регрессии могут быть использованы различные математические функции. Частое практическое применение находят уравнения линейной зависимости, параболы, гиперболы, степной функции и др.

Как правило, анализ начинается с оценки линейной зависимости, поскольку результаты легко поддаются содержательной интерпретации. Выбор типа уравнения связи – достаточно ответственный этап анализа. В «докомпьютерную» эпоху эта процедура была сопряжена с определенными сложностями и требовала от аналитика знания свойств математических функций. В настоящее время на базе специализированных программ можно оперативно построить множество уравнений связи и на основе формальных критериев осуществить выбор лучшей модели (однако математическая грамотность аналитика не утратила своей актуальности).

Гипотезу о типе корреляционной зависимости можно выдвинуть по результатам построения поля корреляции (см. лекцию 6). Исходя из характера расположения точек на графике (координаты точек соответствуют значениям зависимой и независимой переменных), выявляется тенденция связи между признаками (показателями). Если линия регрессии проходит через все точки поля корреляции, то эта свидетельствует о функциональной связи. В практике социально-экономических исследований такую картину наблюдать не приходится, поскольку присутствует статистическая (корреляционная) зависимость. В условиях корреляционной зависимости при нанесении линии регрессии на диаграмму рассеивания наблюдается отклонение точек поля корреляции от линии регрессии, что демонстрирует, так называемые, остатки или ошибки оценивания (см. рисунок 7.1).

Наличие ошибки уравнения связано с тем, что:

§ не все факторы, влияющие на результат, учитываются в уравнении регрессии;

§ может быть неверно выбранаформа связи — уравнение регрессии;

§ не все факторы включены в уравнение.

Построить уравнение регрессии – означает рассчитать значения его параметров. Уравнение регрессии строится на основе фактических значений анализируемых признаков. Расчет параметров, как правило, выполняется с использованием метода наименьших квадратов (МНК).

Суть МНКсостоит в том, что удается получить такие значения параметров уравнения, при которых минимизируется сумма квадратов отклонений теоретических значений признака-результата (рассчитанных на основе уравнения регрессии), от фактических его значений:

Оценка статистической значимости уравнения в целом и параметров,

Оценка статистической значимости уравнения в целом и параметров, (7.2)

Оценка статистической значимости уравнения в целом и параметровгде Оценка статистической значимости уравнения в целом и параметров— фактическое значение признака-результата у i-й единицы совокупности; Оценка статистической значимости уравнения в целом и параметров— значение признака-результата у i-й единицы совокупности, полученное по уравнению регрессии ( ).

Т.о., решается задача на экстремум, то есть необходимо найти, при каких значениях параметров, функция S достигает минимума.

Проводя дифференцирование, приравнивая частные производные нулю:

Оценка статистической значимости уравнения в целом и параметров Оценка статистической значимости уравнения в целом и параметров Оценка статистической значимости уравнения в целом и параметровОценка статистической значимости уравнения в целом и параметров

и далее, решая систему нормальных уравнений, находят значения параметров Оценка статистической значимости уравнения в целом и параметрови Оценка статистической значимости уравнения в целом и параметров:

Оценка статистической значимости уравнения в целом и параметров, (7.3)

Оценка статистической значимости уравнения в целом и параметров, (7.4)

где Оценка статистической значимости уравнения в целом и параметров— среднее произведение значений фактора и результата; Оценка статистической значимости уравнения в целом и параметров— среднее значение признака — фактора; Оценка статистической значимости уравнения в целом и параметров— среднее значение признака -результата; Оценка статистической значимости уравнения в целом и параметров— дисперсия признака-фактора.

Параметр Оценка статистической значимости уравнения в целом и параметровв уравнении регрессии характеризует угол наклона линии регрессии на графике. Этот параметр называют коэффициентом регрессии и его величина характеризует, на сколько единиц своего измерения изменится признак-результат при изменении признака-фактора на единицу своего измерения. Знак при коэффициенте регрессии отражает направленность зависимости (прямая или обратная) и совпадает со знаком коэффициента корреляции (в условиях парной зависимости).

В рамках рассматриваемого примера, в программе STATISTICA рассчитаны параметры уравнения регрессии, описывающего зависимость между уровнем среднедушевых денежных доходов населения и величиной валового регионального продукта на душу населения в регионах России, см. таблицу 7.1.

Таблица 7.1 — Расчет и оценка параметров уравнения, описывающего зависимостьмежду уровнем среднедушевых денежных доходов населения и величиной валового регионального продукта на душу населения в регионах России, 2013 г.

Оценка статистической значимости уравнения в целом и параметров

В графе «В» таблицы содержатся значения параметров уравнения парной регрессии, следовательно, можно записать: Оценка статистической значимости уравнения в целом и параметров= 13406,89 + 22,82 x.Данное уравнение описывает тенденцию связи между анализируемыми характеристиками. Параметр Оценка статистической значимости уравнения в целом и параметров— это коэффициент регрессии. В данном случае он равен 22,82 и характеризует следующее: при увеличении ВРП на душу населения на 1 тыс.рублей среднедушевые денежные доходы в среднем возрастают (на что указывает знак «+») на 22,28 руб.

Параметр Оценка статистической значимости уравнения в целом и параметровуравнения регрессии в социально-экономических исследованиях, как правило, содержательно не интерпретируется. Формально он отражает величину признака — результата при условии, что признак — фактор равен нулю. Параметр Оценка статистической значимости уравнения в целом и параметровхарактеризует расположение линии регрессии на графике, см. рисунок 7.1.

Оценка статистической значимости уравнения в целом и параметров

Рисунок 7.1 — Поле корреляции и линия регрессии, отражающие зависимость уровня среднедушевых денежных доходов населения в регионах России и величины ВРП на душу населения

Значение параметра Оценка статистической значимости уравнения в целом и параметровсоответствует точке пересечения линии регрессии с осью Y, при X=0.

Построение уравнения регрессии сопровождается оценкой статистической значимости уравнения в целом и его параметров. Необходимость таких процедур связана с ограниченным объемом данных, что может препятствовать действию закона больших чисел и, следовательно, выявлению истинной тенденции во взаимосвязи анализируемых показателей. Кроме того, любую исследуемую совокупность можно рассматривать как выборку из генеральной совокупности, а характеристики, полученные в ходе анализа, как оценку генеральных параметров.

Оценка статистической значимости параметров и уравнения в целом – это обоснование возможности использования построенной модели связи для принятия управленческих решений и прогнозирования (моделирования).

Статистическая значимость уравнения регрессиив целом оценивается с использованием F-критерия Фишера, который представляет собой отношение факторной и остаточных дисперсий, рассчитанных на одну степень свободы:

Оценка статистической значимости уравнения в целом и параметров(7.5)

где Оценка статистической значимости уравнения в целом и параметров— факторная дисперсия признака — результата; k – число степеней свободы факторной дисперсии (число факторов в уравнении регрессии); Оценка статистической значимости уравнения в целом и параметров— среднее значение зависимой переменной; Оценка статистической значимости уравнения в целом и параметров— теоретическое (полученной по уравнению регрессии) значение зависимой переменной у i – й единицы совокупности; Оценка статистической значимости уравнения в целом и параметров— остаточная дисперсии признака — результата; n – объем совокупности; n-k-1 – число степеней свободы остаточной дисперсии.

Величина F-критерия Фишера, согласно формуле, характеризует соотношение между факторной и остаточной дисперсиями зависимой переменной, демонстрируя, по существу, во сколько раз величина объясненной части вариации превышает необъясненную.

F-критерий Фишера табулирован, входом в таблицу является число степеней свободы факторной и остаточной дисперсий. Сравнение расчетного значения критерия с табличным (критическим) позволяет ответить на вопрос: статистически значима ли та часть вариации признака-результата, которую удается объяснить факторами, включенными в уравнение данного вида. Если Оценка статистической значимости уравнения в целом и параметров, то уравнение регрессии признается статистически значимым и, соответственно, статистически значим и коэффициент детерминации. В противном случае ( Оценка статистической значимости уравнения в целом и параметров), уравнение – статистически незначимо, т.е. вариация учтенных в уравнении факторов не объясняет статистически значимой части вариации признака-результата, либо не верно выбрано уравнение связи.

Оценка статистической значимости параметров уравнения осуществляется на основе t-статистики, которая рассчитывается как отношение модуля параметров уравнения регрессии к их стандартным ошибкам ( Оценка статистической значимости уравнения в целом и параметров):

Оценка статистической значимости уравнения в целом и параметров, где Оценка статистической значимости уравнения в целом и параметров; (7.6)

Оценка статистической значимости уравнения в целом и параметров, где Оценка статистической значимости уравнения в целом и параметров; (7.7)

где Оценка статистической значимости уравнения в целом и параметров— стандартные отклонения признака — фактора и признака — результата; Оценка статистической значимости уравнения в целом и параметров— коэффициент детерминации.

Оценка статистической значимости уравнения в целом и параметровВ специализированных статистических программах расчет параметров всегда сопровождается расчетом значений их стандартных (среднеквадратических) ошибок и t-статистики (см. таблицу 7.1). Расчетное значение t-статистики сравнивается с табличным, если объем изучаемой совокупности менее 30 единиц (безусловно малая выборка), следует обратиться к таблице t- распределения Стьюдента, если объем совокупности большой, следует воспользоваться таблицей нормального распределения (интеграла вероятностей Лапласа). Параметр уравнения признается статистически значимым, если .

Оценка параметров на основе t-статистики, по существу, является проверкой нулевой гипотезы о равенстве генеральных параметров нулю (H0: Оценка статистической значимости уравнения в целом и параметров=0; H0: Оценка статистической значимости уравнения в целом и параметров=0;), то есть о статистически не значимой величине параметров уравнения регрессии. Уровень значимости гипотезы, как правило, принимается: Оценка статистической значимости уравнения в целом и параметров= 0,05. Если расчетный уровень значимости меньше 0,05 , то нулевая гипотеза отвергается и принимается альтернативная — о статистической значимости параметра.

Оценка статистической значимости уравнения в целом и параметровПродолжим рассмотрение примера. В таблице 7.1 в графе «B» приведены значения параметров, в графе Std.Err.ofB — величины стандартных ошибок параметров ( Оценка статистической значимости уравнения в целом и параметров), в графе t(77 – число степеней свободы) рассчитаны значения t — статистики с учетом числа степеней свободы. Для оценки статистической значимости параметров расчетные значения t — статистик необходимо сравнить с табличным значением. Заданному уровню значимости (0,05) в таблице нормального распределения соответствует t = 1,96. Поскольку Оценка статистической значимости уравнения в целом и параметров18,02, Оценка статистической значимости уравнения в целом и параметров10,84, т.е. , следует признать статистическую значимость полученных значений параметров, т.е. эти значения сформированы под влиянием не случайных факторов и отражают тенденцию связи между анализируемыми показателями.

Для оценки статистической значимости уравнения в целом обратимся к значению F-критерия Фишера (см. таблицу 7.1). Расчетное значение F-критерия = 117,51, табличное значение критерия, исходя из соответствующего числа степеней свободы (для факторной дисперсии d.f. =1, для остаточной дисперсииd.f. =77), равно 4,00 (см. приложение. ). Таким образом, Оценка статистической значимости уравнения в целом и параметров, следовательно, уравнение регрессии в целом статистически значимо. В такой ситуации можно говорить и о статистической значимости величины коэффициента детерминации, т.е. вариация среднедушевых доходов населения в регионах России на 60 процентов может быть объяснена вариацией объемов валового регионального продукта на душу населения.

Проводя оценку статистической значимости уравнения регрессии и его параметров, можем получить различное сочетание результатов.

· Уравнение по F-критерию статистически значимо и все параметры уравнения по t-статистике тоже статистически значимы. Данное уравнение может быть использовано как для принятия управленческих решений (на какие факторы следует воздействовать, чтобы получить желаемый результат), так и для прогнозирования поведения признака-результата при тех или иных значениях факторов.

· По F-критерию уравнение статистически значимо, но незначимы параметры (параметр) уравнения. Уравнение может быть использовано для принятия управленческих решений (касающихся тех факторов, по которым получено подтверждение статистической значимости их влияния), но уравнение не может быть использовано для прогнозирования.

· Уравнение по F-критерию статистически незначимо. Уравнение не может быть использовано. Следует продолжить поиск значимых признаков-факторов или аналитической формы связи аргумента и отклика.

Если подтверждена статистическая значимость уравнения и его параметров, то может быть реализован, так называемый, точечный прогноз, т.е. получена оценка значения признака-результата (y) при тех или иных значениях фактора (x).

Совершенно очевидно, что прогнозное значение зависимой переменной, рассчитанное на основе уравнения связи, не будет совпадать с фактическим ее значением ( Оценка статистической значимости уравнения в целом и параметров).Графически эта ситуация подтверждается тем, что не все точки поля корреляции лежат на линии регрессии,лишь при функциональной связи линия регрессии пройдет через все точки диаграммы рассеивания. Наличие расхождений между фактическими и теоретическими значениями зависимой переменной связано, прежде всего, с самой сутью корреляционной зависимости:одновременно на результат воздействует множество факторов, из которых только часть может быть учтена в конкретном уравнении связи. Кроме того, может быть неверно выбрана форма связи результата и фактора (тип уравнения регрессии). В связи с этим возникает вопрос, насколько информативно построенное уравнение связи. На этот вопрос отвечают два показателя: коэффициент детерминации (о нем уже говорилось выше) и стандартная ошибка оценивания.

Разность между фактическими и теоретическими значениями зависимой переменной называют отклонениями или ошибками, или остатками. На основе этих величин рассчитывается остаточная дисперсия. Квадратный корень из остаточной дисперсии и является среднеквадратической (стандартной) ошибкой оценивания:

Оценка статистической значимости уравнения в целом и параметров= Оценка статистической значимости уравнения в целом и параметров(7.8)

Стандартная ошибка уравнения измеряется в тех же единицах, что и прогнозируемый показатель. Если ошибки уравнения подчиняются нормальному распределению (при больших объемах данных), то 95 процентов значений должны находиться от линии регрессии на расстоянии, не превышающем 2S (исходя из свойства нормального распределения — правила трех сигм). Величина стандартной ошибки оценивания используется при расчете доверительных интервалов при прогнозировании значения признака — результата для конкретной единицы совокупности.

В практических исследованиях часто возникает необходимость в прогнозе среднего значения признака — результата при том или ином значении признака — фактора. В этом случае в расчете доверительного интервала для среднего значения зависимой переменной( Оценка статистической значимости уравнения в целом и параметров)

учитывается величина средней ошибки:

Оценка статистической значимости уравнения в целом и параметров(7.9)

Использование разных величин ошибок объясняется тем, что изменчивость уровней показателей у конкретных единиц совокупности гораздо выше, чем изменчивость среднего значения, следовательно, ошибка прогноза среднего значения меньше.

Доверительный интервал прогноза среднего значения зависимой переменной:

Оценка статистической значимости уравнения в целом и параметров, (7.10)

где Оценка статистической значимости уравнения в целом и параметров— предельная ошибка оценки (см. теорию выборки); t – коэффициент доверия, значение которого находится в соответствующей таблице, исходя из принятого исследователем уровня вероятности (числа степеней свободы) (см. теорию выборки).

Доверительный интервал для прогнозируемого значения признака-результата может быть рассчитан и с учетом поправки на смещение (сдвиг) линии регрессии. Величина поправочного коэффициента определяется:

Оценка статистической значимости уравнения в целом и параметров(7.11)

где Оценка статистической значимости уравнения в целом и параметров— значение признака-фактора, исходя из которого, прогнозируется значение признака-результата.

Оценка статистической значимости уравнения в целом и параметровОтсюда следует, что чем больше значение Оценка статистической значимости уравнения в целом и параметровотличается от среднего значения признака-фактора, тем больше величина корректирующего коэффициента, тем больше ошибка прогноза. С учетом данного коэффициента доверительный интервал прогноза будет рассчитываться:

На точность прогноза на основе уравнения регрессии могут влиять разные причины. Прежде всего, следует учитывать, что оценка качества уравнения и его параметров проводится, исходя из предположения о нормальном распределении случайных остатков. Нарушение этого допущения может быть связано с наличием резко отличающихся значений в данных, с неравномерной вариацией, с наличием нелинейной зависимости. В этом случае качество прогноза снижается. Второй момент, о котором следует помнить, — значения факторов, учитываемые при прогнозировании результата, не должны выходить за пределы размаха вариации данных, на основе которых построено уравнение.

Видео:Критерий Фишера для проверки адекватности построенной регрессииСкачать

Критерий Фишера для проверки адекватности построенной регрессии

Пример нахождения статистической значимости коэффициентов регрессии

Числитель в этой формуле может быть рассчитан через коэффициент детерминации и общую дисперсию признака-результата: Оценка статистической значимости уравнения в целом и параметров.
Для параметра a критерий проверки гипотезы о незначимом отличии его от нуля имеет вид:
Оценка статистической значимости уравнения в целом и параметров,
где Оценка статистической значимости уравнения в целом и параметров— оценка параметра регрессии, полученная по наблюдаемым данным;
μa – стандартная ошибка параметра a.
Для линейного парного уравнения регрессии:
Оценка статистической значимости уравнения в целом и параметров.
Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции в генеральной совокупности используют следующий критерий:
Оценка статистической значимости уравнения в целом и параметров, где ryx — оценка коэффициента корреляции, полученная по наблюдаемым данным; mr – стандартная ошибка коэффициента корреляции ryx.
Для линейного парного уравнения регрессии:
Оценка статистической значимости уравнения в целом и параметров.
В парной линейной регрессии между наблюдаемыми значениями критериев существует взаимосвязь: t ( b =0) = t (r=0).

Пример №1 . Уравнение имеет вид y=ax+b
1. Параметры уравнения регрессии.
Средние значения

Коэффициент детерминации
R 2 = 0.73 2 = 0.54, т.е. в 54% случаев изменения х приводят к изменению y . Другими словами — точность подбора уравнения регрессии — средняя.

xyx 2y 2x ∙ yy(x)(y-y cp ) 2(y-y(x)) 2(x-x p ) 2
691244761153768556128.48491.3620.11367.36
8313368891768911039141.4173.3670.5626.69
9214684642131613432149.70.0313.7114.69
9715394092340914841154.3246.691.7378.03
8813877441904412144146.0166.6964.210.03
9315986492528114787150.63164.6970.1323.36
7414554762102510730133.11.36141.68200.69
7915262412310412008137.7134.03204.2184.03
105168110252822417640161.7476.6939.74283.36
9915498012371615246156.1661.364.67117.36
8512772251612910795143.25367.36263.9110.03
9415588362402514570151.5578.0311.9134.03
105817549452025833815578817541961.67906.571239.67
2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;a) = (10;0.05) = 1.812
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим.

Анализ точности определения оценок коэффициентов регрессии

S a = 0.2704
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 88,16
(128.06;163.97)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика

Статистическая значимость коэффициента регрессии a подтверждается (3.41>1.812).

Статистическая значимость коэффициента регрессии b подтверждается (2.7>1.812).
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими (tтабл=1.812):
(a — tтабл·S a; a + tтабл·Sa)
(0.4325;1.4126)
(b — tтабл·S b; b + tтабл·Sb)
(21.3389;108.3164)
2) F-статистики

Fkp = 4.96
Поскольку F > Fkp, то коэффициент детерминации статистически значим.

Пример №2 . По территориям региона приводятся данные за 199Х г.;

Номер регионаСреднедушевой прожиточный минимум в день одного трудоспособного, руб., хСреднедневная заработная плата, руб., у
178133
282148
387134
479154
589162
6106195
767139
888158
973152
1087162
1176159
12115173
Требуется:
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3. Оценить статистическую значимость параметров регрессии и корреляции.
4. Выполнить прогноз заработной платы у при прогнозном значении среднедушевого прожиточного минимума х , составляющем 107% от среднего уровня.
5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

Решение находим с помощью калькулятора.
Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс — индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε — случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β — используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
Для наших данных система уравнений имеет вид
12a+1027b=1869
1027a+89907b=161808
Из первого уравнения выражаем а и подставим во второе уравнение. Получаем b = 0.92, a = 76.98
Уравнение регрессии: y = 0.92 x + 76.98

Оценка статистической значимости уравнения в целом и параметров

1. Параметры уравнения регрессии.
Выборочные средние.

Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 0 – прямая связь, иначе — обратная). В нашем примере связь прямая.
Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты. Коэффициент эластичности находится по формуле:

Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
Коэффициент эластичности меньше 1. Следовательно, при изменении среднедушевого прожиточного минимума в день на 1%, среднедневная заработная плата изменится менее чем на 1%. Другими словами — влияние среднедушевого прожиточного минимума Х на среднедневную заработную плату Y не существенно.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению средней среднедневной заработной платы Y на 0.721 среднеквадратичного отклонения этого показателя.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.

Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.
Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.72 2 = 0.5199, т.е. в 51.99 % случаев изменения среднедушевого прожиточного минимума х приводят к изменению среднедневной заработной платы y. Другими словами — точность подбора уравнения регрессии — средняя. Остальные 48.01% изменения среднедневной заработной платы Y объясняются факторами, не учтенными в модели.

xyx 2y 2x·yy(x)(y i — y ) 2(y-y(x)) 2(x i — x ) 2|y-y x |:y
7813360841768910374148,77517,56248,757,510,1186
8214867242190412136152,4560,0619,8212,840,0301
8713475691795611658157,05473,06531,482,010,172
7915462412371612166149,693,0618,5743,340,028
8916279212624414418158,8939,069,6411,670,0192
106195112363802520670174,541540,56418,52416,840,1049
671394489193219313138,65280,560,1258345,340,0026
8815877442496413904157,975,060,00075,840,0002
7315253292310411096144,1714,0661,34158,340,0515
8716275692624414094157,0539,0624,462,010,0305
7615957762528112084146,9310,56145,791,840,0759
115173132252992919895182,83297,5696,55865,340,0568
102718698990729437716180818693280,251574,922012,920,6902
2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=10 находим tкрит:
tкрит = (10;0.05) = 1.812
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим.
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:

S 2 y = 157.4922 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

12.5496 — стандартная ошибка оценки (стандартная ошибка регрессии).
S a — стандартное отклонение случайной величины a.

Sb — стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bxp ± ε)
где
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 94

(76.98 + 0.92*94 ± 7.8288)
(155.67;171.33)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
tкрит = (10;0.05) = 1.812

Поскольку 3.2906 > 1.812, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Поскольку 3.1793 > 1.812, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b — tкрит Sb; b + tкрит Sb)
(0.9204 — 1.812·0.2797; 0.9204 + 1.812·0.2797)
(0.4136;1.4273)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a-ta)
(76.9765 — 1.812·24.2116; 76.9765 + 1.812·24.2116)
(33.1051;120.8478)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=10, Fkp = 4.96
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

Оценка значимости по критериям Фишера и Стьюдента

После выбора уравнения линейной регрессии и оценки его параметров проводится оценка статистической значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения регрессии в целом осуществляется с помощью критерия Фишера, который называют также F-критерием. При этом выдвигается нулевая гипотеза 0): коэффициент регрессии равен нулю (b = 0), следовательно, фактор х не оказывает влияния на результат у и линия регрессии параллельна оси абсцисс.

Перед тем как приступить к расчету критерия Фишера, проведем анализ дисперсии. Общую сумму квадратов отклонений у от Оценка статистической значимости уравнения в целом и параметровможно разложить на сумму квадратов отклонений, объясненную регрессией и сумму квадратов отклонений, не объясненную регрессией:

Оценка статистической значимости уравнения в целом и параметров

где Σ(y — Оценка статистической значимости уравнения в целом и параметров) 2 — общая сумма квадратов отклонений значений результата от среднего по выборке; Σ(yx Оценка статистической значимости уравнения в целом и параметров) 2 — сумма квадратов отклонений, объясненная регрессией; Σ(y — ух) 2 — сумма квадратов отклонений, не объясненная регрессией, или остаточная сумма квадратов отклонений.

Общая сумма квадратов отклонений результативного признака у от среднего значения Оценка статистической значимости уравнения в целом и параметровопределяется влиянием различных причин. Условно всю совокупность причин можно разделить на две группы: изучаемый фактор х и прочие, случайные и не включаемые в модель факторы. Если фактор х не оказывает влияния на результат, то линия регрессии на графике параллельна оси абсцисс и Оценка статистической значимости уравнения в целом и параметров= yх. Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадает с остаточной:

Σ(y — Оценка статистической значимости уравнения в целом и параметров) 2 = Σ(y — ух) 2 ,

Если же прочие факторы не влияют на результат, то у связан с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объясненная регрессией, совпадает с общей суммой квадратов:

Σ(y — Оценка статистической значимости уравнения в целом и параметров) 2 = Σ(yx Оценка статистической значимости уравнения в целом и параметров) 2

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс, обусловленный как влиянием фактора х, (регрессией у по х), так и действием прочих причин (необъясненная вариация). Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объясненную вариацию. Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат у. Это равносильно тому, что коэффициент детерминации R 2 будет приближаться к единице.

Любая сумма квадратов отклонений связана с числом степеней свободы df, т.е. с числом свободы независимого варьирования признака.

Для общей суммы квадратов Σ(y — Оценка статистической значимости уравнения в целом и параметров) 2 требуется (п-1) независимых отклонений, ибо в совокупности из п единиц после расчета среднего уровня свободно варьируют лишь (п-1) число отклонений.

При заданном наборе переменных у и х расчетное значение ух является в линейной регрессии функцией только одного параметра — коэффициента регрессии b. Таким образом, факторная сумма квадратов отклонений имеет число степеней свободы, равное единице. Число степеней свободы остаточной суммы квадратов при линейной регрессии составляет (п-2).

Существует равенство между числами степеней свободы общей, факторной и остаточной сумм квадратов.Запишем два равенства:

Σ(y — Оценка статистической значимости уравнения в целом и параметров) 2 = Σ(yx Оценка статистической значимости уравнения в целом и параметров) 2 + Σ(y — ух) 2 ,

Разделив каждую сумму квадратов на соответствующее ей число степеней свободы, получим дисперсии на одну степень свободы:

Оценка статистической значимости уравнения в целом и параметров

Оценка статистической значимости уравнения в целом и параметров

Оценка статистической значимости уравнения в целом и параметров

Так как эти дисперсии рассчитаны на одну степень свободы, их можно сравнивать между собой. Критерий Фишера позволяет проверить нулевую гипотезу Н0 о том, что факторная и остаточная дисперсии на одну степень свободы равны между собой (Dфакт=Dост). Критерий Фишера рассчитывается по следующей формуле:

Оценка статистической значимости уравнения в целом и параметров

Если гипотеза Н0 подтверждается, то факторная и остаточная дисперсии одинаковы, и уравнение регрессии незначимо. Чтобы отвергнуть нулевую гипотезу и подтвердить значимость уравнения регрессии в целом, факторная дисперсия на одну степень свободы должна превышать остаточную дисперсию на одну степень свободы в несколько раз. Существуют специальные таблицы критических значений Фишера при различных уровнях надежности и степенях свободы. В них содержатся максимальные значения отношений дисперсий, при которых нулевая гипотеза подтверждается. Значение критерия Фишера для конкретного случая сравнивается с табличным, и на основе этого гипотеза Н0 принимается или отвергается.

Если Fфакт > Fтабл , тогда гипотеза Н0 отклоняется и делается вывод, что связь между у и х существенна и уравнение регрессии статистически значимо. Если Fфакт ≤ Fтабл , тогда гипотеза Н0 принимается и делается вывод, что уравнение регрессии статистически незначимо, так как существует риск (при заданном уровне надежности) сделать неправильный вывод о наличии связи между х и у.

Между критерием Фишера и коэффициентом детерминации существует связь, которая выражается следующей формулой для парной линейной регрессии:

Оценка статистической значимости уравнения в целом и параметров

В линейной регрессии часто оценивается не только значимость уравнения регрессии в целом, но и значимость его отдельных параметров, а также коэффициента корреляции.

Для того чтобы осуществить такую оценку, необходимо для всехпараметров рассчитывать стандартные ошибки (та , тb , тr):

Оценка статистической значимости уравнения в целом и параметров

Оценка статистической значимости уравнения в целом и параметров

Оценка статистической значимости уравнения в целом и параметров

Теперь нужно рассчитать критерии Стьюдента ta, tb, tr·. Для параметров а, b и коэффициента корреляции r критерий Стьюдента определяет соотношение между самим параметром и его ошибкой:

Оценка статистической значимости уравнения в целом и параметров

Оценка статистической значимости уравнения в целом и параметров

Оценка статистической значимости уравнения в целом и параметров

Фактические значения критерия Стьюдента сравниваются с табличными при определенном уровне надежности α и числе степеней свободы df= (п-2). По результатам этого сравнения принимаются или отвергаются нулевые гипотезы о несущественности параметров или коэффициента корреляции. Если фактическое значение критерия Стьюдента по модулю больше табличного, тогда гипотеза о несущественности отвергается. Подтверждение существенности коэффициента регрессии равнозначно подтверждению существенности уравнения регрессии в целом.

В парной линейной регрессии между критерием Фишера, критериями Стьюдента коэффициентов регрессии и корреляции существует связь.

На основании полученной связи можно сделать вывод, что статистическая незначимость коэффициента регрессии или коэффициента корреляции влечет за собой незначимость уравнения регрессии в целом, либо, наоборот, незначимость уравнения регрессии подразумевает несущественность указанных коэффициентов.

На основе стандартных ошибок параметров и табличных значений критерия Стьюдента можно рассчитать доверительные интервалы:

Поскольку коэффициент регрессии имеет четкую экономическую интерпретацию, то доверительные границы интервала для него не должны содержать противоречивых результатов. Например, такая запись, как -5≤ b ≤ 10, указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже нуль, а этого не может быть. Следовательно, связь между данными нельзя выразить такой моделью (в частности, парной линейной регрессией), должна подбираться другая модель.

Дата добавления: 2015-10-05 ; просмотров: 13850 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

🔍 Видео

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Коэффициент корреляции. Статистическая значимостьСкачать

Коэффициент корреляции.  Статистическая значимость

Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в ExcelСкачать

Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в Excel

Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Непараметрические методы оценки статистической значимостиСкачать

Непараметрические методы оценки статистической значимости

Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

Эконометрика. Построение модели множественной регрессии в Excel. Часть 1.Скачать

Эконометрика. Построение модели множественной регрессии в Excel. Часть 1.

Доверительный интервал за 15 мин. Биостатистика.Скачать

Доверительный интервал за 15 мин. Биостатистика.

Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать

Корреляционно-регрессионный анализ многомерных данных в Excel

Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

Уравнение линейной регрессии. Интерпретация стандартной таблички

Множественная регрессияСкачать

Множественная регрессия

Статистические оценки параметров распределенияСкачать

Статистические оценки параметров распределения

Т-критерий Стьюдента за 12 минут. Биостатистика.Скачать

Т-критерий Стьюдента за 12 минут. Биостатистика.

Однофакторная регрессионная модель. Коэффициенты детерминации, корреляции. Критерий ФишераСкачать

Однофакторная регрессионная модель. Коэффициенты детерминации, корреляции. Критерий Фишера

Метод наименьших квадратов. Парная регрессия расчет без Excel @economc #МНК #регрессия #корреляцияСкачать

Метод наименьших квадратов. Парная регрессия расчет без Excel @economc #МНК #регрессия #корреляция

5 задач по эконометрике, вариант 2Скачать

5 задач по эконометрике, вариант 2

5 задач по эконометрике, вариант 6Скачать

5 задач по эконометрике, вариант 6

Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция
Поделиться или сохранить к себе: