Оценка статистической значимости нелинейного уравнения регрессии

Пример нахождения статистической значимости коэффициентов регрессии

Числитель в этой формуле может быть рассчитан через коэффициент детерминации и общую дисперсию признака-результата: Оценка статистической значимости нелинейного уравнения регрессии.
Для параметра a критерий проверки гипотезы о незначимом отличии его от нуля имеет вид:
Оценка статистической значимости нелинейного уравнения регрессии,
где Оценка статистической значимости нелинейного уравнения регрессии— оценка параметра регрессии, полученная по наблюдаемым данным;
μa – стандартная ошибка параметра a.
Для линейного парного уравнения регрессии:
Оценка статистической значимости нелинейного уравнения регрессии.
Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции в генеральной совокупности используют следующий критерий:
Оценка статистической значимости нелинейного уравнения регрессии, где ryx — оценка коэффициента корреляции, полученная по наблюдаемым данным; mr – стандартная ошибка коэффициента корреляции ryx.
Для линейного парного уравнения регрессии:
Оценка статистической значимости нелинейного уравнения регрессии.
В парной линейной регрессии между наблюдаемыми значениями критериев существует взаимосвязь: t ( b =0) = t (r=0).

Пример №1 . Уравнение имеет вид y=ax+b
1. Параметры уравнения регрессии.
Средние значения

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

Коэффициент детерминации
R 2 = 0.73 2 = 0.54, т.е. в 54% случаев изменения х приводят к изменению y . Другими словами — точность подбора уравнения регрессии — средняя.

xyx 2y 2x ∙ yy(x)(y-y cp ) 2(y-y(x)) 2(x-x p ) 2
691244761153768556128.48491.3620.11367.36
8313368891768911039141.4173.3670.5626.69
9214684642131613432149.70.0313.7114.69
9715394092340914841154.3246.691.7378.03
8813877441904412144146.0166.6964.210.03
9315986492528114787150.63164.6970.1323.36
7414554762102510730133.11.36141.68200.69
7915262412310412008137.7134.03204.2184.03
105168110252822417640161.7476.6939.74283.36
9915498012371615246156.1661.364.67117.36
8512772251612910795143.25367.36263.9110.03
9415588362402514570151.5578.0311.9134.03
105817549452025833815578817541961.67906.571239.67
2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;a) = (10;0.05) = 1.812
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим.

Анализ точности определения оценок коэффициентов регрессии

S a = 0.2704
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 88,16
(128.06;163.97)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика

Статистическая значимость коэффициента регрессии a подтверждается (3.41>1.812).

Статистическая значимость коэффициента регрессии b подтверждается (2.7>1.812).
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими (tтабл=1.812):
(a — tтабл·S a; a + tтабл·Sa)
(0.4325;1.4126)
(b — tтабл·S b; b + tтабл·Sb)
(21.3389;108.3164)
2) F-статистики

Fkp = 4.96
Поскольку F > Fkp, то коэффициент детерминации статистически значим.

Пример №2 . По территориям региона приводятся данные за 199Х г.; <table хСреднедневная заработная плата, руб., у17813328214838713447915458916261061957671398881589731521087162117615912115173 Требуется:
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3. Оценить статистическую значимость параметров регрессии и корреляции.
4. Выполнить прогноз заработной платы у при прогнозном значении среднедушевого прожиточного минимума х , составляющем 107% от среднего уровня.
5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

Решение находим с помощью калькулятора.
Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс — индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε — случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β — используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
Для наших данных система уравнений имеет вид
12a+1027b=1869
1027a+89907b=161808
Из первого уравнения выражаем а и подставим во второе уравнение. Получаем b = 0.92, a = 76.98
Уравнение регрессии: y = 0.92 x + 76.98 Оценка статистической значимости нелинейного уравнения регрессии
1. Параметры уравнения регрессии.
Выборочные средние.

Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 0 – прямая связь, иначе — обратная). В нашем примере связь прямая.
Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты. Коэффициент эластичности находится по формуле:

Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
Коэффициент эластичности меньше 1. Следовательно, при изменении среднедушевого прожиточного минимума в день на 1%, среднедневная заработная плата изменится менее чем на 1%. Другими словами — влияние среднедушевого прожиточного минимума Х на среднедневную заработную плату Y не существенно.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению средней среднедневной заработной платы Y на 0.721 среднеквадратичного отклонения этого показателя.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.

Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.
Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.72 2 = 0.5199, т.е. в 51.99 % случаев изменения среднедушевого прожиточного минимума х приводят к изменению среднедневной заработной платы y. Другими словами — точность подбора уравнения регрессии — средняя. Остальные 48.01% изменения среднедневной заработной платы Y объясняются факторами, не учтенными в модели. <table 2y 2x·yy(x)(y i — y ) 2(y-y(x)) 2(x i — x ) 2|y-y x |:y7813360841768910374148,77517,56248,757,510,11868214867242190412136152,4560,0619,8212,840,03018713475691795611658157,05473,06531,482,010,1727915462412371612166149,693,0618,5743,340,0288916279212624414418158,8939,069,6411,670,0192106195112363802520670174,541540,56418,52416,840,1049671394489193219313138,65280,560,1258345,340,00268815877442496413904157,975,060,00075,840,00027315253292310411096144,1714,0661,34158,340,05158716275692624414094157,0539,0624,462,010,03057615957762528112084146,9310,56145,791,840,0759115173132252992919895182,83297,5696,55865,340,0568

102718698990729437716180818693280,251574,922012,920,6902 2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=10 находим tкрит:
tкрит = (10;0.05) = 1.812
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим.
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:

S 2 y = 157.4922 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

12.5496 — стандартная ошибка оценки (стандартная ошибка регрессии).
S a — стандартное отклонение случайной величины a.

Sb — стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bxp ± ε)
где
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 94

(76.98 + 0.92*94 ± 7.8288)
(155.67;171.33)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
tкрит = (10;0.05) = 1.812

Поскольку 3.2906 > 1.812, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Поскольку 3.1793 > 1.812, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b — tкрит Sb; b + tкрит Sb)
(0.9204 — 1.812·0.2797; 0.9204 + 1.812·0.2797)
(0.4136;1.4273)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a-ta)
(76.9765 — 1.812·24.2116; 76.9765 + 1.812·24.2116)
(33.1051;120.8478)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=10, Fkp = 4.96
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Видео:Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2Скачать

Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2

Проверка на статистическую значимость коэффициентов уравнения регрессии и корреляции.

Качество подбора функции регрессии можно оценить с помощью стандартных ошибок или оценок параметров регрессии. Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитывается t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной стандартного отклонения, т.е.:

Стандартные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:

Оценка статистической значимости нелинейного уравнения регрессии

Оценка статистической значимости нелинейного уравнения регрессии

Оценка статистической значимости нелинейного уравнения регрессии

где Оценка статистической значимости нелинейного уравнения регрессии— мера разброса зависимой переменной вокруг линии регрессии (необъясненная дисперсия) или Оценка статистической значимости нелинейного уравнения регрессии— стандартная ошибка регрессии.

Сравнивая фактическое (расчетное) и критическое (табличное) значения t-статистики, т.е. tфакт и tкрит = t n-1;α — отвергаем или не отвергаем гипотезу Н0:

если tкрит tфакт,то Н0 не отклоняется и признается случайная природа формирования a, b и R..

Фактическое значение t-критерия Стьюдента определяется как

Оценка статистической значимости нелинейного уравнения регрессии

Данная формула свидетельствует, что в парной регрессии Оценка статистической значимости нелинейного уравнения регрессии. Кроме того Оценка статистической значимости нелинейного уравнения регрессии. Следовательно, Оценка статистической значимости нелинейного уравнения регрессии

Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Формулы для расчета доверительных интервалов a, b имеют следующий вид:

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, т.к. он не может одновременно принимать и положительное, и отрицательное значения.

8.Проверка общего качества уравнения регрессии. Для оценки качества построенной модели используют коэффициент (индекс) детерминации — R 2 , а также среднюю ошибку аппроксимации — А.

F-тест — оценивание качества уравнения регрессии – состоит в проверке гипотезы H0 о статистической не значимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fтабл определяется из соотношения значения объясненной и остаточной дисперсии, рассчитанных на одну степень свободы:

Оценка статистической значимости нелинейного уравнения регрессии

где n — объем выборки (объем статистической информации).

Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a — вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.

Если Fтабл Fфакт, то гипотеза H0 не отклоняется и признаётся статистическая незначимость, ненадёжность уравнения регрессии.

9.Интервалы прогноза по линейному уравнению регрессии.В прогнозных расчетах по уравнению регрессии определяется предсказываемое (расчетное) упрог значение как точечный прогноз Оценка статистической значимости нелинейного уравнения регрессиипри хпрогк, т.е. путем подстановки в уравнение регрессии Оценка статистической значимости нелинейного уравнения регрессиисоответствующего прогнозного значения xпрог. Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки Оценка статистической значимости нелинейного уравнения регрессиии соответственно интервальной оценкой прогнозного значения gпрогноз. Фактические значения у варьируют около среднего значения Оценка статистической значимости нелинейного уравнения регрессии. Индивидуальные значения у могут отклоняться от Оценка статистической значимости нелинейного уравнения регрессиина величину случайной ошибки e, дисперсия которой оценивается какостаточная дисперсии на одну степень свободы S 2 . Поэтому ошибка предсказываемого индивидуального значения у должна включать не только стандартную ошибку

S Оценка статистической значимости нелинейного уравнения регрессии, но и случайную ошибку Se.

Средняя стандартная ошибка прогноза Sпрогноз вычисляется по формуле:

Оценка статистической значимости нелинейного уравнения регрессии,

а доверительный интервал прогноза строится по формуле:

Оценка статистической значимости нелинейного уравнения регрессиипрогноз — tкрит Sпрогнозgпрогноз Оценка статистической значимости нелинейного уравнения регрессиипрогноз + tкрит Sпрогноз

При прогнозировании на основе уравнения регрессии следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения у, но и от точности прогноза значения фактора х. Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.

10.Таблица дисперсионного анализа. Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:å Оценка статистической значимости нелинейного уравнения регрессии= å ( Оценка статистической значимости нелинейного уравнения регрессии) 2 + å ( Оценка статистической значимости нелинейного уравнения регрессии) 2 ,

где Оценка статистической значимости нелинейного уравнения регрессии— общая сумма квадратов отклонений;

Оценка статистической значимости нелинейного уравнения регрессии сумма квадратов отклонений, обусловленная регрессией («объясненная», «факторная»);

Оценка статистической значимости нелинейного уравнения регрессии— остаточная сумма квадратов отклонений (“необъясненная”).

Компоненты дисперсииСумма квадратовЧисло степеней свободыДисперсия на одну степень свободы
Общая Оценка статистической значимости нелинейного уравнения регрессииn-1
Факторная Оценка статистической значимости нелинейного уравнения регрессииm Оценка статистической значимости нелинейного уравнения регрессии
Остаточная Оценка статистической значимости нелинейного уравнения регрессииn-m-1 Оценка статистической значимости нелинейного уравнения регрессии

Нелинейная регрессия

Нелинейная регрессия -частный случай регрессионного анализа, в котором рассматриваемая регрессионная модель есть функция, зависящая от параметров и от одной или нескольких свободных переменных. Во многих практических случаях моделирование экономических зависимостей линейными уравнениями дает вполне удовлетворительный результат и может использоваться для анализа и прогнозирования. Однако в силу однообразия и сложности экономических процессов ограничиться рассмотрением лишь линейных регрессионных моделей невозможно. Многие экономические зависимости не являются линейными по своей сути, и поэтому их моделирование линейными уравнениями регрессии, безусловно, не даст положительного результата. Например, при рассмотрении спроса Y на некоторый товар от цены X данного товара в ряде случаев можно ограничиться линейным уравнением регрессии: Y=β01X . Здесь β1 характеризует абсолютное изменение Y (в среднем) при единичном изменении X. Если же мы хотим проанализировать эластичность спроса по цене, то приведенное уравнение не позволит это осуществить. В этом случае целесообразно рассмотреть так называемую логарифмическую модель

При анализе издержек Y от объема выпуска X наиболее обоснованной является полиноминальная (точнее, кубическая) модель При рассмотрении производственных функций линейная модель является нереалистичной. В этом случае обычно используются степенные модели. Например, широкую известность имеет производственная функция Кобба-Дугласа Y=AK α L β (здесь Y – объем выпуска; K и L – затраты капитала и труда соответственно; A, α и β – параметры модели).

Достаточно широко применяются в современном эконометрическом анализе и многие другие модели, в частности обратная и экспоненциальная модели.

Построение и анализ нелинейных моделей имеют свою специфику. Приведенные выше примеры и рассуждения дают основания более детально рассмотреть возможные нелинейные модели.

Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Оценка существенности нелинейной регрессии

Если нелинейное по факторным переменным уравнение регрессии с помощью метода замен можно свести к парному линейному уравнению регрессии, то на это уравнение будут распространяться все методы проверки гипотез для парной линейной зависимости.

Проверка гипотезы о значимости нелинейной регрессионной модели в целом осуществляется через F-критерий. Выдвигается основная гипотеза Но о незначимости коэффициента детерминации для нелинейных форм связи, т.е. о незначимости полученного уравнения регрессии:

Альтернативной является обратная гипотеза Н1 о значимости построенного уравнения регрессии:

Наблюдаемое значение F-критерия вычисляется по формуле

где п — объем выборочной совокупности; l — число оцениваемых параметров по выборочной совокупности.

Критическое значение рассматриваемого критерия Fкрит вычисляется по таблице распределения Фишера в зависимости от уровня значимости α и числа степеней свободы k1 = l-1 и k2 = п-l. Если наблюдаемое значение F-критерия больше критического Fнабл > Fкрит , то основная гипотеза отклоняется, следовательно уравнение нелинейной регрессии является значимым. Если наблюдаемое значение F-критерия меньше критического (Fнабл 2 и индекса детерминации для нелинейных форм связи R 2 .

Выдвигается основная гипотеза Но о линейной зависимости между переменными. Альтернативной является гипотеза о их нелинейной связи. Проверка этих гипотез осуществляется с помощью t-критерия Стьюдента. Наблюдаемое значение t-критерия

Оценка статистической значимости нелинейного уравнения регрессии

где Оценка статистической значимости нелинейного уравнения регрессии— величина ошибки разности (R 2r 2 ), вычисляемая по формуле

Оценка статистической значимости нелинейного уравнения регрессии

Критическое значение рассматриваемого критерия tкрит определяется по таблице распределения Стьюдента в зависимости от уровня значимости α и числа степеней свободы (п – l – 1), где l — число оцениваемых параметров βi в регрессионной модели. Если наблюдаемое значение t-критерия больше критического (tнабл > tкрит ), то основная гипотеза отклоняется и между изучаемыми переменными существует нелинейная взаимосвязь. Если наблюдаемое значение t-критерия меньше критического (tнабл

Дата добавления: 2015-10-05 ; просмотров: 1268 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

🌟 Видео

Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

Нелинейная регрессияСкачать

Нелинейная регрессия

Эконометрика. Нелинейная регрессия. Полулогарифмические функции.Скачать

Эконометрика. Нелинейная регрессия. Полулогарифмические функции.

Эконометрика. Нелинейная регрессия. Степенная функция.Скачать

Эконометрика. Нелинейная регрессия. Степенная функция.

Критерий Фишера для проверки адекватности построенной регрессииСкачать

Критерий Фишера для проверки адекватности построенной регрессии

Эконометрика. Нелинейная регрессия. Гипербола.Скачать

Эконометрика. Нелинейная регрессия. Гипербола.

Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в ExcelСкачать

Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в Excel

Построение регрессионных моделей в R. Оценка точности и адекватности моделейСкачать

Построение регрессионных моделей в R. Оценка точности и адекватности моделей

Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Математика #1 | Корреляция и регрессияСкачать

Математика #1 | Корреляция и регрессия

Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

Уравнение линейной регрессии. Интерпретация стандартной таблички

Множественная регрессияСкачать

Множественная регрессия

Коэффициент корреляции. Статистическая значимостьСкачать

Коэффициент корреляции.  Статистическая значимость

Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать

Корреляционно-регрессионный анализ многомерных данных в Excel

Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

Регрессия в ExcelСкачать

Регрессия в Excel

Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция
Поделиться или сохранить к себе: