Коэффициент детерминации рассчитывается для оценки качества подбора уравнения регрессии. Для приемлемых моделей предполагается, что коэффициент детерминации должен быть хотя бы не меньше 50%. Модели с коэффициентом детерминации выше 80% можно признать достаточно хорошими. Значение коэффициента детерминации R 2 = 1 означает функциональную зависимость между переменными.
Для линейной зависимости коэффициент детерминации равен квадрату коэффициента корреляции rxy: R 2 = rxy 2 .
2 «>Рассчитать свое значение
Например, значение R 2 = 0.83, означает, что в 83% случаев изменения х приводят к изменению y . Другими словами, точность подбора уравнения регрессии — высокая.
В общем случае, коэффициент детерминации находится по формуле: или
В этой формуле указаны дисперсии:
,
где ∑(y- y ) 2 — общая сумма квадратов отклонений;
— сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
— остаточная сумма квадратов отклонений.
В случае нелинейной регрессии коэффициент детерминации рассчитывается через этот калькулятор. При множественной регрессии, коэффициент детемрминации можно найти через сервис Множественная регрессия
Пример . Дано:
- доля денежных доходов, направленных на прирост сбережений во вкладах, займах, сертификатах и в покупку валюты, в общей сумме среднедушевого денежного дохода, % (Y)
- среднемесячная начисленная заработная плата, тыс. руб. (X)
Следует выполнить: 1. построить поле корреляции и сформировать гипотезу о возможной форме и направлении связи; 2. рассчитать параметры уравнений линейной и A1; 3. выполнить расчет прогнозного значения результата, предполагая, что прогнозные значения факторов составят B2 % от их среднего уровня; 4. оценить тесноту связи с помощью показателей корреляции и детерминации, проанализировать их значения; 5. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом; 6. Оценить с помощью средней ошибки аппроксимации качество уравнений; 7. Оценить надежность уравнений в целом через F-критерий Фишера для уровня значимости а = 0,05. По значениям характеристик, рассчитанных в пп. 5,6 и данном пункте, выберете лучшее уравнение регрессии и дайте его обоснование.
- Решение онлайн
- Видео решение
Уравнение имеет вид y = ax + b
1. Параметры уравнения регрессии.
Средние значения
Связь между признаком Y фактором X сильная и прямая.
Уравнение регрессии
Коэффициент детерминации для линейной регрессии равен квадрату коэффициента корреляции.
R 2 = 0.91 2 = 0.83, т.е. в 83% случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая
x | y | x 2 | y 2 | x ∙ y | y(x) | (y-y cp ) 2 | (y-y(x)) 2 | (x-x p ) 2 |
15.1 | 255 | 228.01 | 65025 | 3850.5 | 505.26 | 527451.17 | 62630.22 | 420.25 |
17 | 261 | 289 | 68121 | 4437 | 549.38 | 518772.07 | 83161.41 | 345.96 |
12 | 293 | 144 | 85849 | 3516 | 433.28 | 473699.53 | 19678.51 | 556.96 |
10 | 310 | 100 | 96100 | 3100 | 386.84 | 450587.75 | 5904.58 | 655.36 |
74 | 1425 | 5476 | 2030625 | 105450 | 1872.88 | 196906.67 | 200600 | 1474.56 |
83 | 1985 | 6889 | 3940225 | 164755 | 2081.86 | 1007497.33 | 9381.6 | 2246.76 |
85 | 2549 | 7225 | 6497401 | 216665 | 2128.3 | 2457813.93 | 176990.6 | 2440.36 |
81 | 2012 | 6561 | 4048144 | 162972 | 2035.42 | 1062428.38 | 548.49 | 2061.16 |
22 | 1562 | 484 | 2439844 | 34364 | 665.47 | 337260.88 | 803758.38 | 184.96 |
10 | 386 | 100 | 148996 | 3860 | 386.84 | 354332.48 | 0.71 | 655.36 |
4 | 383 | 16 | 146689 | 1532 | 247.52 | 357913.03 | 18353.53 | 998.56 |
14.1 | 354.1 | 198.81 | 125386.81 | 4992.81 | 482.04 | 393327.58 | 16368.87 | 462.25 |
427.2 | 11775.1 | 27710.82 | 19692405.81 | 709494.31 | 11775.1 | 8137990.81 | 1397376.9 | 12502.5 |
Значимость коэффициента корреляции
По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;a) = (10;0.05) = 1.812
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим
Анализ точности определения оценок коэффициентов регрессии
S a = 3.3432
Доверительные интервалы для зависимой переменной
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-557.64;913.38)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика
Статистическая значимость коэффициента регрессии a подтверждается (6.95>1.812).
Статистическая значимость коэффициента регрессии b не подтверждается (0.96 Fkp, то коэффициент детерминации статистически значим
- Основы линейной регрессии
- Что такое регрессия?
- Линия регрессии
- Метод наименьших квадратов
- Предположения линейной регрессии
- Аномальные значения (выбросы) и точки влияния
- Гипотеза линейной регрессии
- Оценка качества линейной регрессии: коэффициент детерминации R 2
- Применение линии регрессии для прогноза
- Простые регрессионные планы
- Пример: простой регрессионный анализ
- Задача исследования
- Просмотр результатов
- Коэффициенты регрессии
- Распределение переменных
- Диаграмма рассеяния
- Критерии значимости
- Лекция по эконометрике. Лекция по эконометрике
- 💥 Видео
Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать
Основы линейной регрессии
Видео:Коэффициент детерминации. Основы эконометрикиСкачать
Что такое регрессия?
Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение, если данные аппроксимируются прямой линией.
Если мы полагаем, что y зависит от x, причём изменения в y вызываются именно изменениями в x, мы можем определить линию регрессии (регрессия y на x), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.
Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).
Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» и «двигался вспять» к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).
Видео:Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)Скачать
Линия регрессии
Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:
x называется независимой переменной или предиктором.
Y – зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x, т.е. это «предсказанное значение y»
- a – свободный член (пересечение) линии оценки; это значение Y, когда x=0 (Рис.1).
- b – угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
- a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b.
Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия.
Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)
Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать
Метод наименьших квадратов
Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b – выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).
Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).
Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y – предсказанный y, Рис. 2).
Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.
Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.
Видео:Регрессия в ExcelСкачать
Предположения линейной регрессии
Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.
Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:
- Между и существует линейное соотношение: для любых пар данные должны аппроксимировать прямую линию. Если нанести на двумерный график остатки, то мы должны наблюдать случайное рассеяние точек, а не какую-либо систематическую картину.
- Остатки нормально распределены с нулевым средним значением;
- Остатки имеют одну и ту же вариабельность (постоянную дисперсию) для всех предсказанных величин Если нанести остатки против предсказанных величин от мы должны наблюдать случайное рассеяние точек. Если график рассеяния остатков увеличивается или уменьшается с увеличением то это допущение не выполняется;
Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).
Видео:Эконометрика. Линейная парная регрессияСкачать
Аномальные значения (выбросы) и точки влияния
«Влиятельное» наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).
Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть «влиятельным» наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.
И для выбросов, и для «влиятельных» наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).
При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.
Видео:Коэффициент линейной регрессии, 2 способаСкачать
Гипотеза линейной регрессии
При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.
Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на
Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:
Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента
,
— оценка дисперсии остатков.
Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.
Можно рассчитать 95% доверительный интервал для генерального углового коэффициента :
где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия
Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.
Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)
Видео:Математика #1 | Корреляция и регрессияСкачать
Оценка качества линейной регрессии: коэффициент детерминации R 2
Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.
Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.
Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации, обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.
Разность представляет собой процент дисперсии который нельзя объяснить регрессией.
Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.
Видео:Критерий Фишера для проверки адекватности построенной регрессииСкачать
Применение линии регрессии для прогноза
Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).
Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.
Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.
Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.
Подобным образом можно рассчитать более широкую область, внутри которой, как мы ожидаем, лежит наибольшее число (обычно 95%) наблюдений.
Видео:Множественная регрессияСкачать
Простые регрессионные планы
Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид
а регрессионное уравнение с использованием P для X1 выглядит как
Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:
а уравнение примет вид
Y = b 0 + b 1 P 2
Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.
Видео:Как вычислить линейный коэффициент корреляции в MS Excel и построить уравнение регрессии?Скачать
Пример: простой регрессионный анализ
Этот пример использует данные, представленные в таблице:
Рис. 3. Таблица исходных данных.
Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:
Рис. 4. Таблица спецификаций переменных.
Задача исследования
Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 ( Pt_Poor ) как зависимую переменную.
Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 ( Pop_Chng ) как переменную-предиктор.
Просмотр результатов
Коэффициенты регрессии
Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.
На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на .40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на .65.
Распределение переменных
Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .
Рис. 6. Гистограмма переменной Pt_Poor.
Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся «внутри диапазона.»
Рис. 7. Гистограмма переменной Pt_Poor.
Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.
Диаграмма рассеяния
Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.
Рис. 8. Диаграмма рассеяния.
Диаграмма рассеяния показывает явную отрицательную корреляцию ( -.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.
Критерии значимости
Рис. 9. Таблица, содержащая критерии значимости.
Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p .
На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.
Видео:Линейная регрессия. Оценка качества моделиСкачать
Лекция по эконометрике. Лекция по эконометрике
Название | Лекция по эконометрике |
Дата | 21.06.2018 |
Размер | 1.32 Mb. |
Формат файла | |
Имя файла | Лекция по эконометрике.docx |
Тип | Лекция #47509 |
страница | 2 из 5 |
С этим файлом связано 6 файл(ов). Среди них: ЭКОНО Задача.docx, СТАТ в жив. Лекция №9.docx, Вопросы по АВтоматике.docx, ЛЕКЦИЯ СОЦ.СТАТ..doc, доступность к прдовольствию.pdf, Лекция по эконометрике.docx. Показать все связанные файлы Подборка по базе: 1. Лекция Особенности макетирования и верстки длинных документов, Медицинская статистика Лекция проф.Виноградова К.А.(1).pptx, 6 лекция Отбасы.ppt, 9-10 Лекция дуниетану.ppt, такт 5 лекция.doc, Тест к лекциям.doc, 3 лекция. куиз.docx, 3 лекция.pptx, антибиотики лекция.docx, ТПЭФМ_Практическое занятие 1_между лекциями 11 и 12.doc 2.1 Оценка общего качества уравнения регрессии . Коэффициент детерминации характеризует долю вариации (разброса) зависимой переменной, объяснённой с помощью данного уравнения. Замечание. В случае парной линейной регрессии коэффициент детерминации равен квадрату коэффициента линейной корреляции. Более точным является значение коэффициента детерминации с поправкой на число степеней свободы. Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы: – дисперсия, характеризующая общий разброс; – остаточная дисперсия, где m – число независимых (объясняющих) переменных, в случае парной регрессии m =1 и формула имеет вид: . Учитывая приведённые выше обозначения, формула коэффициента детерминации с поправкой на число степеней свободы будет иметь вид: Близость коэффициента детерминации к +1 свидетельствует о том, что существует статистически значимая линейная связь между переменными, а уравнение имеет хорошее качество. Близость к 0 говорит о том, что просто горизонтальная прямая является лучшей по сравнению с найденной регрессионной прямой. Самостоятельную важность коэффициент детерминации приобретает только в случае множественной регрессии. Проверить значимость уравнения регрессии – значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включённых в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Проверка значимости производится на основе дисперсионного анализа. Согласно идее дисперсионного анализа, общая сумма квадратов отклонений (СКО) y от среднего значения раскладывается на две части – объясненную и необъясненную:
В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и уравнение должно иметь вид . Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю. Однако на практике в правой части присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y. Это равносильно тому, что коэффициент детерминации будет приближаться к единице. Число степеней свободы (df-degrees of freedom) – это число независимо варьируемых значений признака. Для общей СКО требуется (n-1) независимых отклонений, Из этого баланса определяем, что = n–2. Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы: — общая дисперсия, — факторная, — остаточная. Анализ статистической значимости коэффициентов линейной регрессии Хотя теоретические значения коэффициентов уравнения линейной зависимости предполагаются постоянными величинами, оценки а и b этих коэффициентов, получаемые в ходе построения уравнения по данным случайной выборки, являются случайными величинами. Если ошибки регрессии имеют нормальное распределение, то оценки коэффициентов также распределены нормально и могут характеризоваться своими средними значениями и дисперсией. Поэтому анализ коэффициентов начинается с расчёта этих характеристик. Дисперсии коэффициентов рассчитываются по формулам: Дисперсия коэффициента регрессии : Дисперсия параметра : Альтернативная гипотеза имеет вид: . t – статистики имеют t – распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента при определённом уровне значимости α и степенях свободы находят критическое значение . Если , то нулевая гипотеза должна быть отклонена, коэффициенты считаются статистически значимыми. Если , то нулевая гипотеза не может быть отклонена. (В случае, если коэффициент b статистически незначим, уравнение должно иметь вид , и это означает, что связь между признаками отсутствует. В случае, если коэффициент а статистически незначим, рекомендуется оценить новое уравнение в виде ). Интервальные оценки коэффициентов линейного уравнения регрессии: Доверительный интервал для а: . Доверительный интервал для b: Это означает, что с заданной надёжностью (где — уровень значимости) истинные значения а, b находятся в указанных интервалах. Коэффициент регрессии имеет четкую экономическую интерпретацию, поэтому доверительные границы интервала не должны содержать противоречивых результатов, например, Они не должны включать нуль. Анализ статистической значимости уравнения в целом. Распределение Фишера в регрессионном анализе Оценка значимости уравнения регрессии в целом дается с помощью F- критерия Фишера. При этом выдвигается нулевая гипотеза о том, что все коэффициенты регрессии, за исключением свободного члена а, равны нулю и, следовательно, фактор х не оказывает влияния на результат y ( или ). Величина F – критерия связана с коэффициентом детерминации. В случае множественной регрессии: В случае парной регрессии формула F – статистики принимает вид: Если , то отклоняется и делается вывод о существенности статистической связи между y и x. Если , то вероятность уравнение регрессии считается статистически незначимым, не отклоняется. Замечание. В парной линейной регрессии . Кроме того, , поэтому . Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии. Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных, или же, наоборот, включения их в это число. Пусть, например, вначале была оценена множественная линейная регрессия по п наблюдениям с т объясняющими переменными, и коэффициент детерминации равен , затем последние k переменных исключены из числа объясняющих, и по тем же данным оценено уравнение , для которого коэффициент детерминации равен (, т.к. каждая дополнительная переменная объясняет часть , пусть небольшую, вариации зависимой переменной). Для того, чтобы проверить гипотезу об одновременном равенстве нулю всех коэффициентов при исключённых переменных, рассчитывается величина По таблицам распределения Фишера, при заданном уровне значимости, находят . И если , то нулевая гипотеза отвергается. В таком случае исключать все k переменных из уравнения некорректно. Аналогичные рассуждения могут быть проведены и по поводу обоснованности включения в уравнение регрессии одной или нескольких k новых объясняющих переменных. В этом случае рассчитывается F – статистика Замечания. 1. Включать новые переменные целесообразно по одной. 2. Для расчёта F – статистики при рассмотрении вопроса о включении объясняющих переменных в уравнение желательно рассматривать коэффициент детерминации с поправкой на число степеней свободы. F – статистика Фишера используется также для проверки гипотезы о совпадении уравнений регрессии для отдельных групп наблюдений. Пусть имеются 2 выборки, содержащие, соответственно, наблюдений. Для каждой из этих выборок оценено уравнение регрессии вида . Пусть СКО от линии регрессии (т.е. ) равны для них, соответственно, . Проверяется нулевая гипотеза : о том, что все соответствующие коэффициенты этих уравнений равны друг другу, т.е. уравнение регрессии для этих выборок одно и то же. Пусть оценено уравнение регрессии того же вида сразу для всех наблюдений, и СКО . Тогда рассчитывается F – статистика по формуле: Если же , то нулевая гипотеза отвергается, и единое уравнение регрессии построить нельзя. Предпосылками МНК являются: 1. случайный характер ошибок регрессии; 2. нулевая средняя величина ошибок регрессии, не зависящая от значения объясняющих переменных; 3. независимость распределения ошибок для различных наблюдений; в случае оценки уравнения на временных рядах – отсутствие автокорреляции ошибок; 4. постоянство дисперсии ошибок, её независимость от значений объясняющих переменных – гомоскедастичность (если эта предпосылка не выполняется, то имеет место гетероскедастичность ошибок); 5. нормальность распределения ошибок регрессии. Для проверки выполнения каждой из предпосылок применения МНК имеются специальные тесты. Реализация многих из этих тестов предполагает значительный объём исходных данных. Если распределение случайных ошибок не соответствует некоторым предпосылкам МНК, то следует корректировать модель. Проверка первой предпосылки МНК Прежде всего, проверяется случайный характер остатков – первая предпосылка МНК. С этой целью стоится график зависимости остатков от теоретических значений результативного признака (рис. 1). Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и МНК оправдан, теоретические значения хорошо аппроксимируют фактические значения . Рис. 1. Зависимость случайных остатков от теоретических значений . Рис. 2. Зависимость случайных остатков от теоретических значений . Проверка второй предпосылки МНК Вторая предпосылка МНК относительно нулевой средней величины остатков означает, что (или ). Это выполнимо для линейных моделей и моделей, нелинейных относительно включаемых переменных. Вместе с тем, несмещенность оценок коэффициентов регрессии, полученных МНК, зависит от независимости случайных остатков и величин , что также исследуется в рамках соблюдения второй предпосылки МНК. С этой целью наряду с изложенным графиком зависимости остатков от теоретических значений результативного признака строится график зависимости случайных остатков от факторов, включенных в регрессию (рис. 3). Рис. .3. Зависимость величины остатков от величины фактора . Замечание. Предпосылка о нормальном распределении остатков (пятая предпосылка) позволяет проводить проверку параметров регрессии и корреляции с помощью — и -критериев. Вместе с тем, оценки регрессии, найденные с применением МНК, обладают хорошими свойствами даже при отсутствии нормального распределения остатков, т.е. при нарушении пятой предпосылки МНК. Совершенно необходимым для получения по МНК состоятельных оценок параметров регрессии является соблюдение третьей и четвертой предпосылок. Автокорреляция ошибок. Статистика Дарбина-Уотсона Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Отсутствие зависимости гарантирует отсутствие коррелированности между любыми отклонениями, т.е. и, в частности, между соседними отклонениями . Автокорреляция (последовательная корреляция) остатков определяется как корреляция между соседними значениями случайных отклонений во времени (временные ряды) или в пространстве (перекрестные данные). Она обычно встречается во временных рядах и очень редко – в пространственных данных. Возможны следующие случаи: В экономических задачах значительно чаще встречается положительная автокорреляция, чем отрицательная автокорреляция. Если же характер отклонений случаен, то можно предположить, что в половине случаев знаки соседних отклонений совпадают, а в половине – различны. Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.
От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках. Для обнаружения автокорреляции используют либо графический метод. Либо статистические тесты. Графический метод заключается в построении графика зависимости ошибок от времени (в случае временных рядов) или от объясняющих переменных и визуальном определении наличия или отсутствия автокорреляции. Наиболее известный критерий обнаружения автокорреляции первого порядка – критерий Дарбина-Уотсона. Статистика DW Дарбина-Уотсона приводится во всех специальных компьютерных программах как одна из важнейших характеристик качества регрессионной модели. Сначала по построенному эмпирическому уравнению регрессии определяются значения отклонений . А затем рассчитывается статистика Дарбина-Уотсона по формуле: – положительная автокорреляция, принимается ; – зона неопределенности; – автокорреляция отсутствует; – зона неопределенности; – отрицательная автокорреляция, принимается .
Можно показать, что статистика DW тесно связана с коэффициентом автокорреляции первого порядка: При отсутствии таблиц критических значений DW можно использовать следующее «грубое» правило: при достаточном числе наблюдений (12-15), при 1-3 объясняющих переменных, если , то отклонения от линии регрессии можно считать взаимно независимыми. Либо применить к данным уменьшающее автокорреляцию преобразование (например автокорреляционное преобразование или метод скользящих средних). Существует несколько ограничений на применение критерия Дарбина-Уотсона.
,
Для авторегрессионных моделей предлагается h – статистика Дарбина Обычно значение рассчитывается по формуле , а D(c) равна квадрату стандартной ошибки Sc оценки коэффициента с. Методы устранения автокорреляции. Авторегрессионное преобразование В случае наличия автокорреляции остатков полученная формула регрессии обычно считается неудовлетворительной. Автокорреляция ошибок первого порядка говорит о неверной спецификации модели. Поэтому следует попытаться скорректировать саму модель. Посмотрев на график ошибок, можно поискать другую (нелинейную) формулу зависимости, включить неучтённые до этого факторы, уточнить период проведения расчётов или разбить его на части. Если все эти способы не помогают и автокорреляция вызвана какими–то внутренними свойствами ряда <ei>, можно воспользоваться преобразованием, которое называется авторегрессионной схемой первого порядка AR(1). (Авторегрессией это преобазование называется потому, что значение ошибки определяется значением той же самой величины, но с запаздыванием. Т.к. максимальное запаздывание равно 1, то это авторегрессия первого порядка). Формула AR(1) имеет вид: Рассмотрим AR(1) на примере парной регрессии: (2). Сделаем замены переменных (6). Поскольку случайные отклонения удовлетворяют предпосылкам МНК, оценки а * и b будут обладать свойствами наилучших линейных несмещенных оценок. По преобразованным значениям всех переменных с помощью обычного МНК вычисляются оценки параметров а* и b, которые затем можно использовать в регрессии. Т.о. если остатки по исходному уравнению регрессии автокоррелированы, то для оценки параметров уравнения используют следующие преобразования: 1) Преобразовать исходные переменные у и х к виду (3), (4). 2) Обычным МНК для уравнения (6) определить оценки а * и b. 3) Рассчитать параметр а исходного уравнения из соотношения (4). 4) Записать исходное уравнение (1) с параметрами а и b (где а — из п.3, а b берётся непосредственно из уравнения (6)). Авторегрессионное преобразование может быть обобщено на произвольное число объясняющих переменных, т.е. использовано для уравнения множественной регрессии. Для преобразования AR(1) важно оценить коэффициент автокорреляции ρ. Это делается несколькими способами. Самое простое – оценить ρ на основе статистики DW: В случае, когда есть основания считать, что положительная автокорреляция отклонений очень велика (), можно использовать метод первых разностей (метод исключения тенденции), уравнение принимает вид . В случае полной отрицательной автокорреляции отклонений () Вычисляются средние за 2 периода, а затем по ним рассчитывают а и b. Данная модель называется моделью регрессии по скользящим средним. Проверка гомоскедастичности дисперсии ошибок В соответствии с четвёртой предпосылкой МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию . Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. В качестве примера реальной гетероскедастичности можно привести то, что люди с большим доходом не только тратят в среднем больше, чем люди с меньшим доходом, но и разброс в их потреблении также больше, поскольку они имеют больше простора для распределения дохода. Наличие гетероскедастичности можно наглядно видеть из поля корреляции (- графический метод обнаружения гетероскедастичности).
При нарушении гомоскедастичности имеем неравенства: , где — постоянная дисперсия ошибки при соблюдении предпосылки. Т.е. можно записать, что дисперсия ошибки при наблюдении пропорциональна постоянной дисперсии: . — коэффициент пропорциональности. Он меняется при переходе от одного значения фактора к другому. Задача состоит в том, чтобы определить величину и внести поправку в исходные переменные. При этом используют обобщённый МНК, который эквивалентен обычному МНК, применённому к преобразованным данным. Чтобы убедиться в обоснованности использования обобщённого МНК проводят эмпирическое подтверждение наличия гетероскедастичности. При малом объёме выборки, что наиболее характерно для эмпирических исследований, для оценки гетероскедастичности может использоваться метод Гольдфельда-Квандта (в 1965 г. они рассмотрели модель парной линейной регрессии, в которой дисперсия ошибок пропорциональна квадрату фактора). Пусть рассматривается модель, в которой дисперсия пропорциональна квадрату фактора: , . А также остатки имеют нормальное распределение и отсутствует автокорреляция остатков. Параметрический тест (критерий) Гольдфельда – Квандта: 1. Все n наблюдений в выборке упорядочиваются по величине x. 2. Вся упорядоченная выборка разбивается на три подвыборки (объёмом k, С, k.) 3. Оцениваются отдельные регрессии для первой подвыборки (k первых наблюдений) и для последней подвыборки (k последних наблюдений). 4. Определяются остаточные суммы квадратов для первой и второй групп. Если предположение о пропорциональности дисперсий отклонений значениям x верно, то . 5. Выдвигается нулевая гипотеза которая предполагает отсутствие гетероскедастичности. Для проверки этой гипотезы рассчитывается отношение Если , то гипотеза об отсутствии гетероскедастичности отклоняется при уровне значимости α. Этот же тест может быть использован и при предположении об обратной пропорциональности между дисперсией и значениями объясняющей переменной . В этом случае статистика Фишера принимает вид: При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов заменять обобщенным методом наименьших квадратов (ОМНК). Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Остановимся на использовании ОМНК для корректировки гетероскедастичности. Рассмотрим ОМНК для корректировки гетероскедастичности. Будем предполагать, что среднее значение остаточных величин равно нулю , а дисперсия пропорциональна величине . , При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности. В общем виде для уравнения модель примет вид: Иными словами, от регрессии по мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид: Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида , Если преобразованные переменные и взять в отклонениях от средних уровней, то коэффициент регрессии можно определить как Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Для применения ОМНК необходимо знать фактические значения дисперсий отклонений . На практике такие значения известны крайне редко. Поэтому, чтобы применить ВНК, необходимо сделать реалистические предположения о значениях . В эконометрических исследованиях чаще всего предполагается, что дисперсии отклонений пропорциональны или значениям xi, или значениям , т.е или . Если предположить, что дисперсии пропорциональны значениям фактора x, т.е. , тогда уравнение парной регрессии преобразуется делением его левой и правой частей на : . Если предположить, что дисперсии , то соответствующим преобразованием будет деление уравнения парной регрессии на xi: В полученной регрессии по сравнению с исходным уравнением параметры поменялись ролями: свободный член а стал коэффициентом, а коэффициент b – свободным членом. Применяя обычный МНК в преобразованных переменных , Пример. Рассматривая зависимость сбережений от дохода , по первоначальным данным было получено уравнение регрессии В случае множественной регрессии , Если предположить (т.е. дисперсия ошибок пропорциональна квадрату первой объясняющей переменной), то в этом случае обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения: Следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным. Пример. Пусть – издержки производства, – объем продукции, – основные производственные фонды, – численность работников, тогда уравнение Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида В заключение следует отметить, что обнаружении гетероскедастичности и её корректировка являются весьма серьёзной и трудоёмкой проблемой. В случае применения обобщённого (взвешенного) МНК необходима определённая информация или обоснованные предположения о величинах . 💥 ВидеоМножественный и частные коэффициенты корреляцииСкачать Парная регрессия: линейная зависимостьСкачать Однофакторная регрессионная модель. Коэффициенты детерминации, корреляции. Критерий ФишераСкачать Множественная регрессия в ExcelСкачать Эконометрика Линейная регрессия и корреляцияСкачать Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать Расчет коэффициента корреляции в ExcelСкачать Лекция 8. Линейная регрессияСкачать |