Оценка качества уравнения регрессии коэффициент детерминации

Пример нахождения коэффициента детерминации

Коэффициент детерминации рассчитывается для оценки качества подбора уравнения регрессии. Для приемлемых моделей предполагается, что коэффициент детерминации должен быть хотя бы не меньше 50%. Модели с коэффициентом детерминации выше 80% можно признать достаточно хорошими. Значение коэффициента детерминации R 2 = 1 означает функциональную зависимость между переменными.

Для линейной зависимости коэффициент детерминации равен квадрату коэффициента корреляции rxy: R 2 = rxy 2 .
2 «>Рассчитать свое значение
Например, значение R 2 = 0.83, означает, что в 83% случаев изменения х приводят к изменению y . Другими словами, точность подбора уравнения регрессии — высокая.

В общем случае, коэффициент детерминации находится по формуле: Оценка качества уравнения регрессии коэффициент детерминацииили Оценка качества уравнения регрессии коэффициент детерминации
В этой формуле указаны дисперсии:
Оценка качества уравнения регрессии коэффициент детерминации,
где ∑(y- y ) 2 — общая сумма квадратов отклонений;
Оценка качества уравнения регрессии коэффициент детерминации— сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
Оценка качества уравнения регрессии коэффициент детерминации— остаточная сумма квадратов отклонений.

В случае нелинейной регрессии коэффициент детерминации рассчитывается через этот калькулятор. При множественной регрессии, коэффициент детемрминации можно найти через сервис Множественная регрессия

Пример . Дано:

  • доля денежных доходов, направленных на прирост сбережений во вкладах, займах, сертификатах и в покупку валюты, в общей сумме среднедушевого денежного дохода, % (Y)
  • среднемесячная начисленная заработная плата, тыс. руб. (X)

Следует выполнить: 1. построить поле корреляции и сформировать гипотезу о возможной форме и направлении связи; 2. рассчитать параметры уравнений линейной и A1; 3. выполнить расчет прогнозного значения результата, предполагая, что прогнозные значения факторов составят B2 % от их среднего уровня; 4. оценить тесноту связи с помощью показателей корреляции и детерминации, проанализировать их значения; 5. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом; 6. Оценить с помощью средней ошибки аппроксимации качество уравнений; 7. Оценить надежность уравнений в целом через F-критерий Фишера для уровня значимости а = 0,05. По значениям характеристик, рассчитанных в пп. 5,6 и данном пункте, выберете лучшее уравнение регрессии и дайте его обоснование.

  • Решение онлайн
  • Видео решение

Уравнение имеет вид y = ax + b
1. Параметры уравнения регрессии.
Средние значения

Связь между признаком Y фактором X сильная и прямая.
Уравнение регрессии

Коэффициент детерминации для линейной регрессии равен квадрату коэффициента корреляции.
R 2 = 0.91 2 = 0.83, т.е. в 83% случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая

xyx 2y 2x ∙ yy(x)(y-y cp ) 2(y-y(x)) 2(x-x p ) 2
15.1255228.01650253850.5505.26527451.1762630.22420.25
17261289681214437549.38518772.0783161.41345.96
12293144858493516433.28473699.5319678.51556.96
10310100961003100386.84450587.755904.58655.36
741425547620306251054501872.88196906.672006001474.56
831985688939402251647552081.861007497.339381.62246.76
852549722564974012166652128.32457813.93176990.62440.36
812012656140481441629722035.421062428.38548.492061.16
221562484243984434364665.47337260.88803758.38184.96
103861001489963860386.84354332.480.71655.36
4383161466891532247.52357913.0318353.53998.56
14.1354.1198.81125386.814992.81482.04393327.5816368.87462.25
427.211775.127710.8219692405.81709494.3111775.18137990.811397376.912502.5
2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;a) = (10;0.05) = 1.812
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим

Анализ точности определения оценок коэффициентов регрессии

S a = 3.3432
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-557.64;913.38)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика

Статистическая значимость коэффициента регрессии a подтверждается (6.95>1.812).

Статистическая значимость коэффициента регрессии b не подтверждается (0.96 Fkp, то коэффициент детерминации статистически значим

Видео:Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)Скачать

Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)

Основы линейной регрессии

Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Что такое регрессия?

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение, если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x, причём изменения в y вызываются именно изменениями в x, мы можем определить линию регрессии (регрессия y на x), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» и «двигался вспять» к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Видео:Коэффициент детерминации. Основы эконометрикиСкачать

Коэффициент детерминации. Основы эконометрики

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y – зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x, т.е. это «предсказанное значение y»

  • a – свободный член (пересечение) линии оценки; это значение Y, когда x=0 (Рис.1).
  • b – угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b.

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия.

Оценка качества уравнения регрессии коэффициент детерминации

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b – выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y – предсказанный y, Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Оценка качества уравнения регрессии коэффициент детерминации

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Видео:Критерий Фишера для проверки адекватности построенной регрессииСкачать

Критерий Фишера для проверки адекватности построенной регрессии

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины Оценка качества уравнения регрессии коэффициент детерминацииостаток равен разнице Оценка качества уравнения регрессии коэффициент детерминациии соответствующего предсказанного Оценка качества уравнения регрессии коэффициент детерминацииКаждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Между Оценка качества уравнения регрессии коэффициент детерминациии Оценка качества уравнения регрессии коэффициент детерминациисуществует линейное соотношение: для любых пар Оценка качества уравнения регрессии коэффициент детерминацииданные должны аппроксимировать прямую линию. Если нанести на двумерный график остатки, то мы должны наблюдать случайное рассеяние точек, а не какую-либо систематическую картину.
  • Остатки нормально распределены с нулевым средним значением;
  • Остатки имеют одну и ту же вариабельность (постоянную дисперсию) для всех предсказанных величин Оценка качества уравнения регрессии коэффициент детерминацииЕсли нанести остатки против предсказанных величин Оценка качества уравнения регрессии коэффициент детерминацииот Оценка качества уравнения регрессии коэффициент детерминациимы должны наблюдать случайное рассеяние точек. Если график рассеяния остатков увеличивается или уменьшается с увеличением Оценка качества уравнения регрессии коэффициент детерминациито это допущение не выполняется;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать Оценка качества уравнения регрессии коэффициент детерминацииили Оценка качества уравнения регрессии коэффициент детерминациии рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Видео:Математика #1 | Корреляция и регрессияСкачать

Математика #1 | Корреляция и регрессия

Аномальные значения (выбросы) и точки влияния

«Влиятельное» наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть «влиятельным» наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для «влиятельных» наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Видео:Линейная регрессия. Оценка качества моделиСкачать

Линейная регрессия. Оценка качества модели

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между Оценка качества уравнения регрессии коэффициент детерминациии Оценка качества уравнения регрессии коэффициент детерминациинет линейного соотношения: изменение Оценка качества уравнения регрессии коэффициент детерминациине влияет на Оценка качества уравнения регрессии коэффициент детерминации

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент Оценка качества уравнения регрессии коэффициент детерминацииравен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению Оценка качества уравнения регрессии коэффициент детерминации, которая подчиняется Оценка качества уравнения регрессии коэффициент детерминациираспределению с Оценка качества уравнения регрессии коэффициент детерминациистепенями свободы, где Оценка качества уравнения регрессии коэффициент детерминациистандартная ошибка коэффициента Оценка качества уравнения регрессии коэффициент детерминации

Оценка качества уравнения регрессии коэффициент детерминации

Оценка качества уравнения регрессии коэффициент детерминации,

Оценка качества уравнения регрессии коэффициент детерминации— оценка дисперсии остатков.

Обычно если достигнутый уровень значимости Оценка качества уравнения регрессии коэффициент детерминациинулевая гипотеза отклоняется.

Можно рассчитать 95% доверительный интервал для генерального углового коэффициента Оценка качества уравнения регрессии коэффициент детерминации:

Оценка качества уравнения регрессии коэффициент детерминации

где Оценка качества уравнения регрессии коэффициент детерминациипроцентная точка Оценка качества уравнения регрессии коэффициент детерминациираспределения со степенями свободы Оценка качества уравнения регрессии коэффициент детерминациичто дает вероятность двустороннего критерия Оценка качества уравнения регрессии коэффициент детерминации

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, Оценка качества уравнения регрессии коэффициент детерминациимы можем аппроксимировать Оценка качества уравнения регрессии коэффициент детерминациизначением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Видео:МЕТРИКИ РЕГРЕССИИ В МАШИННОМ ОБУЧЕНИИ | MAE, MSE, RMSE, R2, коэффициент детерминации.Скачать

МЕТРИКИ РЕГРЕССИИ В МАШИННОМ ОБУЧЕНИИ | MAE, MSE, RMSE, R2, коэффициент детерминации.

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения Оценка качества уравнения регрессии коэффициент детерминациии Оценка качества уравнения регрессии коэффициент детерминациимы ожидаем, что Оценка качества уравнения регрессии коэффициент детерминацииизменяется, по мере того как изменяется Оценка качества уравнения регрессии коэффициент детерминации, и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации Оценка качества уравнения регрессии коэффициент детерминациибудет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии Оценка качества уравнения регрессии коэффициент детерминации, которая объясняется регрессией называют коэффициентом детерминации, обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность Оценка качества уравнения регрессии коэффициент детерминациипредставляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки Оценка качества уравнения регрессии коэффициент детерминациимы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Видео:Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования Оценка качества уравнения регрессии коэффициент детерминациизначения по значению Оценка качества уравнения регрессии коэффициент детерминациив пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину Оценка качества уравнения регрессии коэффициент детерминациидля наблюдаемых, которые имеют определенное значение Оценка качества уравнения регрессии коэффициент детерминациипутем подстановки этого значения Оценка качества уравнения регрессии коэффициент детерминациив уравнение линии регрессии.

Итак, если Оценка качества уравнения регрессии коэффициент детерминациипрогнозируем Оценка качества уравнения регрессии коэффициент детерминациикак Оценка качества уравнения регрессии коэффициент детерминацииИспользуем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины Оценка качества уравнения регрессии коэффициент детерминациив популяции.

Повторение этой процедуры для различных величин Оценка качества уравнения регрессии коэффициент детерминациипозволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Подобным образом можно рассчитать более широкую область, внутри которой, как мы ожидаем, лежит наибольшее число (обычно 95%) наблюдений.

Видео:Однофакторная регрессионная модель. Коэффициенты детерминации, корреляции. Критерий ФишераСкачать

Однофакторная регрессионная модель. Коэффициенты детерминации, корреляции. Критерий Фишера

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

Оценка качества уравнения регрессии коэффициент детерминации

а регрессионное уравнение с использованием P для X1 выглядит как

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

Оценка качества уравнения регрессии коэффициент детерминации

а уравнение примет вид

Y = b 0 + b 1 P 2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Видео:Множественная регрессия в Excel и мультиколлинеарностьСкачать

Множественная регрессия в Excel и мультиколлинеарность

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Оценка качества уравнения регрессии коэффициент детерминации

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Оценка качества уравнения регрессии коэффициент детерминации

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 ( Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 ( Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Оценка качества уравнения регрессии коэффициент детерминации

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на .40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на .65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Оценка качества уравнения регрессии коэффициент детерминации

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся «внутри диапазона.»

Оценка качества уравнения регрессии коэффициент детерминации

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Оценка качества уравнения регрессии коэффициент детерминации

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию ( -.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Оценка качества уравнения регрессии коэффициент детерминации

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p .

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Видео:Регрессия в ExcelСкачать

Регрессия в Excel

R — значит регрессия

Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин — Машинного Обучения и Больших Данных. Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии. Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале — уметь отличить сигнал от шума.

Оценка качества уравнения регрессии коэффициент детерминации

Для этой цели мы будем использовать язык программирования и среду разработки R, который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.

Видео:Как вычислить линейный коэффициент корреляции в MS Excel и построить уравнение регрессии?Скачать

Как вычислить линейный коэффициент корреляции в MS Excel  и построить уравнение регрессии?

Введение в регрессионный анализ

Если имеется корреляционная зависимость Оценка качества уравнения регрессии коэффициент детерминациимежду переменными y и x , возникает необходимость определить функциональную связь между двумя величинами. Зависимость среднего значения Оценка качества уравнения регрессии коэффициент детерминацииназывается регрессией y по x .

Основу регрессионного анализа составляет метод наименьших квадратов (МНК), в соответствии с которым в качестве уравнения регресии берется функция Оценка качества уравнения регрессии коэффициент детерминациитакая, что сумма квадратов разностей Оценка качества уравнения регрессии коэффициент детерминацииминимальна.

Оценка качества уравнения регрессии коэффициент детерминации

Карл Гаусс открыл, или точнее воссоздал, МНК в возрасте 18 лет, однако впервые результаты были опубликованы Лежандром в 1805 г. По непроверенным данным метод был известен еще в древнем Китае, откуда он перекочевал в Японию и только затем попал в Европу. Европейцы не стали делать из этого секрета и успешно запустили в производство, обнаружив с его помощью траекторию карликовой планеты Церес в 1801 г.

Вид функции Оценка качества уравнения регрессии коэффициент детерминации, как правило, определен заранее, а с помощью МНК подбираются оптимальные значения неизвестных параметров. Метрикой рассеяния значений Оценка качества уравнения регрессии коэффициент детерминациивокруг регрессии Оценка качества уравнения регрессии коэффициент детерминацииявляется дисперсия.

Оценка качества уравнения регрессии коэффициент детерминации

  • k — число коэффициентов в системе уравнений регрессии.

Чаще всего используется модель линейной регрессии, а все нелинейные зависимости Оценка качества уравнения регрессии коэффициент детерминацииприводят к линейному виду с помощью алгебраических ухищрений, различных преобразования переменных y и x .

Линейная регрессия

Уравнения линейной регрессии можно записать в виде

Оценка качества уравнения регрессии коэффициент детерминации

В матричном виде это выгладит

Оценка качества уравнения регрессии коэффициент детерминации

  • y — зависимая переменная;
  • x — независимая переменная;
  • β — коэффициенты, которые необходимо найти с помощью МНК;
  • ε — погрешность, необъяснимая ошибка и отклонение от линейной зависимости;

Оценка качества уравнения регрессии коэффициент детерминации

Случайная величина Оценка качества уравнения регрессии коэффициент детерминацииможет быть интерпретирована как сумма из двух слагаемых:

  • Оценка качества уравнения регрессии коэффициент детерминацииполная дисперсия (TSS).
  • Оценка качества уравнения регрессии коэффициент детерминацииобъясненная часть дисперсии (ESS).
  • Оценка качества уравнения регрессии коэффициент детерминацииостаточная часть дисперсии (RSS).

Еще одно ключевое понятие — коэффициент корреляции R 2 .

Оценка качества уравнения регрессии коэффициент детерминации

Видео:Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

Ограничения линейной регрессии

Для того, чтобы использовать модель линейной регрессии необходимы некоторые допущения относительно распределения и свойств переменных.

  1. Линейность, собственно. Увеличение, или уменьшение вектора независимых переменных в k раз, приводит к изменению зависимой переменной также в k раз.
  2. Матрица коэффициентов обладает полным рангом, то есть векторы независимых переменных линейно независимы.
  3. Экзогенность независимых переменныхОценка качества уравнения регрессии коэффициент детерминации. Это требование означает, что математическое ожидание погрешности никоим образом нельзя объяснить с помощью независимых переменных.
  4. Однородность дисперсии и отсутствие автокорреляции. Каждая εi обладает одинаковой и конечной дисперсией σ 2 и не коррелирует с другой εi. Это ощутимо ограничивает применимость модели линейной регрессии, необходимо удостовериться в том, что условия соблюдены, иначе обнаруженная взаимосвязь переменных будет неверно интерпретирована.

Как обнаружить, что перечисленные выше условия не соблюдены? Ну, во первых довольно часто это видно невооруженным глазом на графике.

Неоднородность дисперсии
Оценка качества уравнения регрессии коэффициент детерминации

При возрастании дисперсии с ростом независимой переменной имеем график в форме воронки.

Оценка качества уравнения регрессии коэффициент детерминации

Нелинейную регрессии в некоторых случая также модно увидеть на графике довольно наглядно.

Тем не менее есть и вполне строгие формальные способы определить соблюдены ли условия линейной регрессии, или нарушены.

  • Автокорреляция проверяется статистикой Дарбина-Уотсона (0 ≤ d ≤ 4). Если автокорреляции нет, то значения критерия d≈2, при позитивной автокорреляции d≈0, при отрицательной — d≈4.
  • Неоднородность дисперсии — Тест Уайта, Оценка качества уравнения регрессии коэффициент детерминации, при Оценка качества уравнения регрессии коэффициент детерминацииchi_$» data-tex=»inline»/> нулевая гипотеза отвергается и констатируется наличие неоднородной дисперсии. Используя ту же Оценка качества уравнения регрессии коэффициент детерминацииможно еще применить тест Бройша-Пагана.
  • Мультиколлинеарность — нарушения условия об отсутствии взаимной линейной зависимости между независимыми переменными. Для проверки часто используют VIF-ы (Variance Inflation Factor).

Оценка качества уравнения регрессии коэффициент детерминации

В этой формуле Оценка качества уравнения регрессии коэффициент детерминации— коэффициент взаимной детерминации между Оценка качества уравнения регрессии коэффициент детерминациии остальными факторами. Если хотя бы один из VIF-ов > 10, вполне резонно предположить наличие мультиколлинеарности.

Почему нам так важно соблюдение всех выше перечисленных условий? Все дело в Теореме Гаусса-Маркова, согласно которой оценка МНК является точной и эффективной лишь при соблюдении этих ограничений.

Видео:Множественная регрессияСкачать

Множественная регрессия

Как преодолеть эти ограничения

Нарушения одной или нескольких ограничений еще не приговор.

  1. Нелинейность регрессии может быть преодолена преобразованием переменных, например через функцию натурального логарифма ln .
  2. Таким же способом возможно решить проблему неоднородной дисперсии, с помощью ln , или sqrt преобразований зависимой переменной, либо же используя взвешенный МНК.
  3. Для устранения проблемы мультиколлинеарности применяется метод исключения переменных. Суть его в том, что высоко коррелированные объясняющие переменные устраняются из регрессии, и она заново оценивается. Критерием отбора переменных, подлежащих исключению, является коэффициент корреляции. Есть еще один способ решения данной проблемы, который заключается в замене переменных, которым присуща мультиколлинеарность, их линейной комбинацией. Этим весь список не исчерпывается, есть еще пошаговая регрессия и другие методы.

К сожалению, не все нарушения условий и дефекты линейной регрессии можно устранить с помощью натурального логарифма. Если имеет место автокорреляция возмущений к примеру, то лучше отступить на шаг назад и построить новую и лучшую модель.

Видео:Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция

Линейная регрессия плюсов на Хабре

Итак, довольно теоретического багажа и можно строить саму модель.
Мне давно было любопытно от чего зависит та самая зелененькая цифра, что указывает на рейтинг поста на Хабре. Собрав всю доступную статистику собственных постов, я решил прогнать ее через модель линейно регрессии.

Загружает данные из tsv файла.

  • points — Рейтинг статьи
  • reads — Число просмотров.
  • comm — Число комментариев.
  • faves — Добавлено в закладки.
  • fb — Поделились в социальных сетях (fb + vk).
  • bytes — Длина в байтах.

Вопреки моим ожиданиям наибольшая отдача не от количества просмотров статьи, а от комментариев и публикаций в социальных сетях. Я также полагал, что число просмотров и комментариев будет иметь более сильную корреляцию, однако зависимость вполне умеренная — нет надобности исключать ни одну из независимых переменных.

Теперь собственно сама модель, используем функцию lm .

В первой строке мы задаем параметры линейной регрессии. Строка points

. определяет зависимую переменную points и все остальные переменные в качестве регрессоров. Можно определить одну единственную независимую переменную через points

reads , набор переменных — points

Перейдем теперь к расшифровке полученных результатов.

  • Intercept — Если у нас модель представлена в виде Оценка качества уравнения регрессии коэффициент детерминации, то тогда Оценка качества уравнения регрессии коэффициент детерминации— точка пересечения прямой с осью координат, или intercept .
  • R-squared — Коэффициент детерминации указывает насколько тесной является связь между факторами регрессии и зависимой переменной, это соотношение объясненных сумм квадратов возмущений, к необъясненным. Чем ближе к 1, тем ярче выражена зависимость.
  • Adjusted R-squared — Проблема с Оценка качества уравнения регрессии коэффициент детерминациив том, что он по любому растет с числом факторов, поэтому высокое значение данного коэффициента может быть обманчивым, когда в модели присутствует множество факторов. Для того, чтобы изъять из коэффициента корреляции данное свойство был придуман скорректированный коэффициент детерминации .
  • F-statistic — Используется для оценки значимости модели регрессии в целом, является соотношением объяснимой дисперсии, к необъяснимой. Если модель линейной регрессии построена удачно, то она объясняет значительную часть дисперсии, оставляя в знаменателе малую часть. Чем больше значение параметра — тем лучше.
  • t value — Критерий, основанный на t распределении Стьюдента . Значение параметра в линейной регрессии указывает на значимость фактора, принято считать, что при t > 2 фактор является значимым для модели.
  • p value — Это вероятность истинности нуль гипотезы, которая гласит, что независимые переменные не объясняют динамику зависимой переменной. Если значение p value ниже порогового уровня (.05 или .01 для самых взыскательных), то нуль гипотеза ложная. Чем ниже — тем лучше.

Оценка качества уравнения регрессии коэффициент детерминации

Можно попытаться несколько улучшить модель, сглаживая нелинейные факторы: комментарии и посты в социальных сетях. Заменим значения переменных fb и comm их степенями.

Проверим значения параметров линейной регрессии.

Как видим в целом отзывчивость модели возросла, параметры подтянулись и стали более шелковистыми , F-статистика выросла, так же как и скорректированный коэффициент детерминации .

Проверим, соблюдены ли условия применимости модели линейной регрессии? Тест Дарбина-Уотсона проверяет наличие автокорреляции возмущений.

И напоследок проверка неоднородности дисперсии с помощью теста Бройша-Пагана.

Видео:Коэффициент линейной регрессии, 2 способаСкачать

Коэффициент линейной регрессии, 2 способа

В заключение

Конечно наша модель линейной регрессии рейтинга Хабра-топиков получилось не самой удачной. Нам удалось объяснить не более, чем половину вариативности данных. Факторы надо чинить, чтобы избавляться от неоднородной дисперсии, с автокорреляцией тоже непонятно. Вообще данных маловато для сколь-нибудь серьезной оценки.

Но с другой стороны, это и хорошо. Иначе любой наспех написанный тролль-пост на Хабре автоматически набирал бы высокий рейтинг, а это к счастью не так.

📸 Видео

Лекция 8. Линейная регрессияСкачать

Лекция 8. Линейная регрессия

Корреляция: расчет коэффициента корреляции. Детерминация, средняя ошибка аппроксимации без ExcelСкачать

Корреляция: расчет коэффициента корреляции. Детерминация, средняя ошибка аппроксимации без Excel

Парная линейная регрессионная модель. Эконометрика. Лабораторная работа №1. ExcelСкачать

Парная линейная регрессионная модель. Эконометрика. Лабораторная работа №1. Excel
Поделиться или сохранить к себе: