Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Содержание
  1. Относительная ошибка
  2. Предельная ошибка
  3. math4school.ru
  4. Ошибки в уравнениях
  5. Потеря корней
  6. Посторонние корни
  7. Ошибки, связанные с заменой переменной
  8. Ошибки, связанные с использованием модуля
  9. Подбор корней без обоснования
  10. Ошибки в логарифмических и показательных уравнениях
  11. Ошибки в тригонометрических уравнениях
  12. Разница между абсолютной ошибкой и относительной ошибкой
  13. Видео: Разница между абсолютной ошибкой и относительной ошибкой | Сравните разницу между похожими терминами
  14. Содержание:
  15. Ключевое различие — абсолютная ошибка против относительной ошибки
  16. Что такое абсолютная ошибка?
  17. Что такое относительная ошибка?
  18. В чем разница между абсолютной ошибкой и относительной ошибкой?
  19. Определение абсолютной ошибки и относительной ошибки
  20. Абсолютная ошибка = фактическое значение — измеренное значение
  21. Единицы и расчет абсолютной погрешности и относительной погрешности
  22. Единицы
  23. Расчет ошибок
  24. 📹 Видео

Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Относительная ошибка

Ошибки средняя квадратичная т, истинная А называются абсолютными ошибками.

В некоторых случаях абсолютная ошибка недостаточно показательна, в частности, при линейных измерениях. Например, линия измерена с ошибкой ±5 см. Для длины линии в 1 метр эта точность, очевидно, низкая, а для длины линии в 1 километр точность безусловно более высокая. Поэтому нагляднее точность измерения будет характеризоваться отношением абсолютной ошибки к полученному значению измеренной величины. Такое отношение называется относительной ошибкой. Относительная ошибка выражается дробью, причем дробь преобразуется так, чтобы числитель ее был равен единице.

Относительную ошибку определяют по соответствующей абсолютной

ошибке. Пусть X — полученное значение некоторой величины, тогда Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно— средняя квадратичная относительная ошибка этой величины; Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно— истинная относительная ошибка.

Знаменатель относительной ошибки целесообразно округлять до двух значащих цифр с нулями.

Пример. В приведенном случае средняя квадратичная относительная ошибка измерения линии будет равна Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Видео:Как рассчитать относительную ошибку аппроксимации в ExcelСкачать

Как рассчитать относительную ошибку аппроксимации в Excel

Предельная ошибка

Предельной ошибкой называется наибольшее значение случайной ошибки, которое может появиться при данных условиях равноточных измерений.

Теорией вероятности доказано, что случайные ошибки только в трех случаях из 1000 могут превзойти величину Зт; 5 ошибок из 100 могут превзойти и 32 ошибки из 100 могут превзойти т.

Исходя из этого, в геодезической практике результаты измерений, содержащие ошибки 0>3т, относят к измерениям, содержащим грубые ошибки, и в обработку не принимают.

Значения ошибок 0 = 2т используют как предельные при составлении технических требований для данного вида работ, т. е. все случайные ошибки измерений, превышающие по своей величине эти значения, считают недопустимыми. При получении расхождений, превышающих величину 2т, принимают меры по улучшению условий измерений, а сами измерения повторяют.

Видео:Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

Уравнение линейной регрессии. Интерпретация стандартной таблички

math4school.ru

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Видео:Как удалить ошибки в ячейках ExcelСкачать

Как удалить ошибки в ячейках Excel

Ошибки в уравнениях

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

При выполнении контрольных, тестовых и экзаменационных работ по математике учащиеся решают самые разнообразные уравнения, отличающиеся по тематике и по сложности. Разобрать все ошибки, которые при этом допускаются, не представляется возможным. Ниже предлагаются примеры лишь наиболее распространенных ошибок и анализ ситуаций, в которых эти ошибки допускаются.

Потеря корней

При решении уравнений из-за выполнения нетождественных преобразований может произойти либо потеря корней , либо появление посторонних корней .

При выполнении нетождественных преобразований в процессе решения уравнения может произойти сужение области допустимых значений неизвестного , а значит, корни могут оказаться потерянными.

K Упражнение. Решить уравнение lg (x – 10) 2 + lg x 2 = 2lg 24 .

L Неправильное решение.

2lg (x – 10) + 2lg x = 2lg 24,

Произвели проверку и убедились, что все корни удовлетворяют данному уравнению.

Комментарий . Из-за неправильного применения формул произошло сужение области допустимых значений неизвестного.

J Правильное решение.

Ответ: –2; 4; 6 и 12.

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

При делении обеих частей уравнения на выражение, содержащее неизвестное , могут быть потеряны корни, которые обращают эти выражения в ноль.

K Упражнение 1. Решить уравнение 3 х ( х 2 – 2 х – 3) = 9 ( х 2 – 2 х – 3) .

L Неправильное решение.

Разделим обе части уравнения на квадратный трехчлен, записанный в скобках, и получим:

J Правильное решение.

Перенесем правую часть исходного уравнения влево и вынесем общий множитель за скобки:

K Упражнение 2. Решить уравнение lg 2 x – lg x = 0 .

L Неправильное решение.

Разделим обе части уравнения на lg x и получим:

J Правильное решение.

Необходимо помнить, что обычно легче исключить посторонний корень, чем найти потерянный.

Посторонние корни

При решении уравнений существуют два диаметрально противоположных мнения относительно полученного результата. Одни считают, что проверка должна производиться всегда, другие считают ее необязательной. На самом деле проверка полученных корней в одних случаях является обязательной и является частью решения уравнения, а в других случаях в проверке необходимости нет.

Проверка полученного решения уравнения обычно делается с целью исключения посторонних корней, которые чаще всего появляются в результате нетождественных преобразований, приводящих к расширению области допустимых значений переменного. Рассмотрим далее некоторые случаи появления посторонних корней.

Это может случиться при умножении обеих частей дробного уравнения на выражение, содержащее неизвестную величину .

K Упражнение. Решить уравнение

5 – x5 + 3х= 0 .
x – 1x 2 – 1

L Неправильное решение.

Умножим все члены уравнения на х 2 – 1 и получим:

Комментарий . Был приобретен посторонний корень х = 1, в чем можно убедиться с помощью проверки .

J Правильный ответ: х = 0.

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Появление посторонних корней может быть вызвано сокращением дроби на множитель, содержащий неизвестную величину .

K Упражнение. Решить уравнение

L Неправильное решение.

Заметим, что х 2 – 81 = (x – 9) (x + 9) и произведем сокращение дроби на x – 9 . Имеем:

Комментарий . Был приобретен посторонний корень х = 9 .

J Правильный ответ: решений нет.

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Приведение подобных слагаемых с неизвестным в знаменателе, в том случае, если они взаимно уничтожаются, также может привести к приобретению постороннего корня.

K Упражнение. Решить уравнение

х 2 – 81
2+ х 2 –2– 4х = 0 .
3х 23х 2

L Неправильное решение.

После приведения подобных слагаемых получим:

Комментарий . Был приобретен посторонний корень х = 0 .

J Правильный ответ: 4 .

Заметим, что аналогичная ситуация может сложиться и для слагаемых, содержащих переменную под знаком корня или под знаком логарифма.

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Очень часто посторонние корни появляются при возведении в четную степень обеих частей уравнения . Рассмотрим следующее иррациональное уравнение и на его примере – процесс появления посторонних корней.

K Упражнение. Решить уравнение √ х + 3 + √ 7 – х = 2 .

L Неправильное решение.

И число –2 , и число 6 содержатся в области допустимых значений переменной х , значит, являются решениями исходного уравнения.

Комментарий . Оба корня посторонние и были приобретены в процессе решения. Как же это произошло? Дело вот в чем. В процессе решения с помощью возведения в квадрат и элементарных преобразований мы перешли от уравнения

Последнему уравнению число –2 удовлетворяет, после подстановки получаем верное равенство 1 = 1 . Предыдущее же уравнение при подстановке –2 дает ложное равенство 1 = –1 , которое стало верным именно в результате возведения в квадрат, ведь 1 2 = (–1) 2 . Число –2 является корнем второго уравнения, для первого – посторонний корень. А вот число 6 не является корнем ни одного из них.

Шестерка выходит на арену при переходе от уравнения

которое уже имеет один корень –2 , к уравнению

Теперь возведение в квадрат превращает ложное равенство 2 = –2 в истинное равенство 4 = 4 , которые соответствуют этим уравнениям для случая х = 6 . Для последнего уравнения 6 – истинный корень, а для предпоследнего – ложный. И вот, путем преобразований мы получаем уравнение

для которого числа –2 и 6 — самые настоящие корни, а для исходного — посторонние. Два раза мы применяли возведение в квадрат и каждый раз приобретали посторонний корень, каждый из которых благополучно преодолел фильтр ОДЗ. В данном случае проверка обязательна.

J Правильный ответ: решений нет.

Необходимо помнить, что если область допустимых значений неизвестного найдена и при решении уравнения получены корни, принадлежащие ей, то проверка корней не нужна, только если при этом в процессе решения все преобразования были тождественными.

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Если при решении уравнения используется тот факт, что произведение равно нулю, когда хотя бы один из множителей равен нулю , прежде чем писать ответ, необходимо убедиться, что все найденные корни удовлетворяют условию.

K Упражнение. Решить уравнение ( x – 5) (х + 2) √ х – 3 = 0 .

L Неправильное решение.

Перейдем от данного уравнения у совокупности уравнений:

Комментарий . Число –2 обращает подкоренное выражение х – 3 в отрицательное число, а значит не может быть корнем уравнения.

J Правильный ответ: 5 и 3 .

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Часто причиной изменения множества корней уравнения во время его преобразования является применение равенств, правая и левая части которых имеют разные области определения . Таких равенств много, вот некоторые из них:

x = x · y
y
tg ( x + y ) =tg x + tg y
1 – tg x · tg y
sin 2 x =2 tg x
1 + tg 2 x

В каждом из этих равенств область определения выражения, стоящего в правой части, является подмножеством области выражения, стоящего в левой части. Поэтому использование этих равенств слева направо может привести к потере корней, а справа налево – к появлению посторонних корней .

L Неправильное решение.

так как х ≥ 3 , то |х – 1| = х – 1 и

Комментарий . Применение формулы √ х · y = √ х · √ y привело к потере корня x = 1 . И вот почему. Исходное уравнение имеет область допустимых значений ∪[3; +∞) , а вот уже ОДЗ уравнения (left| x-1right|cdot sqrt=x-1) – только [3; +∞) , что и привело к потере 1 .

Можем порекомендовать возвести обе части исходного уравнения в квадрат. Это может привести к появлению посторонних корней, избавиться от которых проверкой, как правило, проще, чем заниматься поисками потерянных корней.

J Правильное решение.

(left(x-1 right)^2cdot left(x-3 right)=left(x-1 right)^2;)

(left(x-1 right)^2cdot left(x-3 right)-left(x-1 right)^2=0;)

(left(x-1 right)^2cdot left(x-4 right)=0;)

Проверкой убеждаемся, что оба корня действительные.

Ошибки, связанные с заменой переменной

При решении некоторых уравнений достаточно удачным является метод замены переменной . Но применение этого метода учащиеся осуществляют не всегда правильно.

Так необходимо помнить, что при наличии нескольких степеней заменять новой переменной надо ту, у которой показатель наименьший .

K Упражнение. Решить уравнение (5 left(x-3 right)^-6=left(x-3 right)^.)

L Неправильное решение.

Сделав замену ( left(x-3 right)^=t), считают, что ( left(x-3 right)^=t^2) и уравнение переписывают в виде 5t 2 – t – 6 = 0 , после чего, конечно, верный результат уже не получить.

J Правильное решение.

Верный результат можно получить, сделав замену ( left(x-3 right)^=t), тогда ( left(x-3 right)^=t^2) с продолжением:

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Правильно сделав замену и верно найдя значение вспомогательной переменной, учащиеся часто допускают ошибку, используя не то равенство, которым вспомогательная переменная вводилась .

K Упражнение. Решить уравнение х + 4 √ x – 5 = 0 .

L Неправильное решение.

Комментарий . После нахождения значений вспомогательной переменной t для нахождения х следовало использовать подстановку √ x = t , а не x = t 2 .

J Правильное решение.

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

При решении иррациональных уравнений учащиеся чаще всего применяют метод возведения в соответствующую степень. В результате этого решения иррациональных уравнений получаются громоздкими и не всегда доводятся до конца .

K Упражнение. Решить уравнение (x^2-4x-sqrt=6.)

L Неправильное (нерациональное) решение.

Чаще всего данное уравнение начинают решать так:

Нередко продолжения решения не следует, так как с полученным уравнением четвертой степени справится не каждый.

Комментарий . В качестве альтернативы можно предложить способ введения новой переменной.

J Правильное решение.

и исходное уравнение принимает вид:

А дальше все просто:

Комментарий . Числа –2 и 6 не подвергались проверке осознанно. В данном случае после возведения в квадрат не могли появиться посторонние корни, так как и квадратный корень, и подкоренное выражение после возведения в квадрат заведомо равны положительным числам.

Ошибки, связанные с использованием модуля

При решении уравнений, в тех случаях, когда необходимо использовать понятия модуля и арифметического корня , допускаются серьезные ошибки, связанные либо с незнанием, либо с непониманием этих понятий.

K Упражнение 1. Решить уравнение (sqrt=9.)

L Неправильное решение.

J Правильное решение.

K Упражнение 2. Решить уравнение (sqrt=x+3.)

L Неправильное решение.

Ответ: корнем данного уравнения является любое действительное число.

J Правильное решение.

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Учитывая, что решение уравнений, содержащих модуль, часто вызывает затруднения, приведем полное и развернутое решение одного из таких уравнений.

K Упражнение. Решить уравнение |x – 3| + |x –4| = 1 .

J Правильное решение.

Находим нули модулей, для |х – 3| это 3 , для |x – 4| это 4 , и разбиваем ими область допустимых значений неизвестного на числовые промежутки:

На каждом из этих промежутков исходное уравнение принимает свой вид.

1) при х ∈ (–∞; 3) исходное уравнение принимает вид:

так как 3 ∉ (–∞; 3 ) , то на этом промежутке решений нет;

2) при х ∈ [3; 4) исходное уравнение принимает вид:

что является истинным тождеством; значит, каждое число рассматриваемого промежутка [3; 4) является решением уравнения;

3) при х ∈ [4; +∞) исходное уравнение принимает вид:

так как 4 ∈ [4; +∞) , то 4 – корень уравнения.

Так как [3; 4)∪ = [3; 4] , то корнями исходного уравнения являются все числа числового промежутка [3; 4] .

Подбор корней без обоснования

К ошибочным решениям можно отнести и верный подбор корня заданного уравнения, иногда просто угадывание, без доказательства его единственности .

K Упражнение. Решить уравнение х (х + 1) (х + 2) (х + 3) = 24 .

L Неправильное решение.

Подбором находят корень х = 1 из разложения 24 = 1 · 2 · 3 · 4.

Комментарий . Был подобран корень х = 1 , но не обнаружен еще один корень х = –4 , который соответствует разложению 24 = –4 · (–3) · (–2) · (–1) . Но даже если и второй корень успешно подобран, но не обосновано отсутствие других корней, то считать такое решение уравнения правильным нельзя.

J Правильное решение.

введем новую переменную x 2 + 3х + 1 = t , тогда

1) x 2 + 3х + 1 = –5, x 2 + 3х + 6 = 0, решений нет;

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Наиболее распространенным методом доказательства единственности корня нестандартного уравнения является использование свойства монотонности входящих в уравнение функций . Часто при этом используется производная.

K Упражнение. Решить уравнение x 11 + 5х – 6 = 0 .

L Неправильное решение.

Методом подбора находим корень уравнения х = 1 .

Комментарий . Не приведено обоснование единственности подобранного корня уравнения.

J Правильное решение.

Корень х = 1 легко угадывается, а производная левой части равна 11x 10 + 5 и положительна на всей числовой оси. Отсюда следует монотонность функции у = x 11 + 5х – 6 , что и доказывает единственность подобранного корня.

Ошибки в логарифмических и показательных уравнениях

Для решения логарифмических и показательных уравнений используются специальные приемы, основанные на свойствах логарифмов и степеней. Рассмотрим связанные с применением этих приемов ошибки.

При решении уравнений, которые можно свести к равенству степеней с одинаковыми основаниями или с одинаковыми показателями , не всегда делаются правильные выводы.

K Упражнение 1. Решить уравнение (log7 x) 1 /3 = 1 .

L Неправильное решение.

Так как при одинаковых основаниях показатели не равны, то равенство степеней невозможно, а, значит, корней нет.

Ответ: корней нет.

J Правильное решение.

Возведем в куб обе части уравнения, тогда

K Упражнение 2. Решить уравнение (х + 5) х 2 + х – 2 = 1 .

L Неправильное решение.

Комментарий . Потерян корень х = –4 . Избежать этого можно было и при данном способе решения уравнения, если учесть, что степень равна 1 не только в случае нулевого показателя, но и в случае основания равного 1 при произвольном показателе. И тогда в дополнение к приведенному решению имеем:

J Правильное решение.

Прологарифмируем обе части уравнения по некоторому основанию, например 10, при условии х > 5 , тогда

Необходимо помнить, что:

из равенства степеней, основания которых равны единице, не следует обязательное равенство показателей этих степеней;

степенно–показательное уравнение предпочтительно решать путем логарифмирования.

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

При решении логарифмических уравнений часто приходится применять свойства логарифмов с одинаковыми основаниями . При применении этих свойств учащиеся часто допускают ошибки.

L Неправильное решение.

Комментарий . В решении допущены две серьезные ошибки: во-первых, произведение логарифмов двух чисел заменено логарифмом произведения этих чисел; во-вторых, при решении уравнения 3х 2 = 81x потерян корень х = 0 (этот корень, конечно, не является корнем исходного уравнения, что не оправдывает его потерю).

J Правильное решение.

K Упражнение 2. Решить уравнение lg x 2 = 4 .

L Неправильное решение.

J Правильное решение 1.

2lg |x| = 4; lg | x| = 2; |x| = 100; x = ±100.

J Правильное решение 2.

lg x 2 = lg 10000; x 2 = 10000; x = ±100.

Относительная ошибка уравнения показывает вероятность ошибки уравнения верно неверно

Большие затруднения у многих учащихся возникают при выполнении действий над логарифмами с разными основаниями , так как учащиеся либо не умеют пользоваться соответствующими формулами, либо не знают их.

Следует помнить, что переход к логарифму с другим основанием может привести как к приобретению посторонних корней, так и к потере корней .

K Упражнение 1. Решить уравнение (left(log_5 +2 right)<log _>^2 ;x=0.)

L Неправильное решение.

(left(1 +2 log _xright)log _x=0;)

Комментарий . Преобразование логарифма с основание х в логарифм с основанием 5 привело к появлению постороннего корня, так как произошло расширение ОДЗ.

J Правильное решение.

Приведенное выше решение следует дополнить указанием области допустимых значений неизвестного в исходном уравнении. Это объединение числовых промежутков (0; 1)∪(1; +∞) . И указанием того факта, что 1 ∉ (0; 1)∪(1; +∞) , а, значит, не является корнем.

K Упражнение 2. Решить уравнение (20log_sqrt+ 7log_x^3-3log _x^2=0.)

L Неправильное решение.

Комментарий . В приведенном решении потерян корень, и вот почему. Был выполнен переход к логарифму с основанием х . Это вызвало изменения в ОДЗ неизвестного. Одно из таких изменений – это х ≠ 1 . Поэтому число 1 , как возможный корень исходного уравнения, следует рассмотреть отдельно.

J Правильное решение.

Приведенное выше решение нужно дополнить лишь проверкой того, не является ли 1 корнем уравнения. Подставляем 1 в исходное уравнение и убеждаемся, что 1 – корень.

Ошибки в тригонометрических уравнениях

Выделение в отдельный подраздел тригонометрических уравнений связано стем, что при их решении применяются не только алгебраические методы. Рассмотрим наиболее типичные ошибки, которые допускают учащиеся при решении тригонометрических уравнений.

Часто можно встретить неправильную запись решения тригонометрического уравнения или лишь частное решение .

Видео:Поиск ошибок в Excel. Подсчет и работа с ошибкамиСкачать

Поиск ошибок в Excel. Подсчет и работа с ошибками

Разница между абсолютной ошибкой и относительной ошибкой

Видео:Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Видео: Разница между абсолютной ошибкой и относительной ошибкой | Сравните разницу между похожими терминами

  • Видео: Абсолютная и относительная погрешность

    Видео:Часть 2. Множественная регрессия в Microsoft Excel. Автокорреляция, гетероскедастичность.Скачать

    Часть 2. Множественная регрессия в Microsoft Excel. Автокорреляция, гетероскедастичность.

    Содержание:

    Видео:Множественная регрессияСкачать

    Множественная регрессия

    Ключевое различие — абсолютная ошибка против относительной ошибки

    Абсолютная ошибка и относительная ошибка — это два способа указания ошибок в экспериментальных измерениях, хотя существует разница между абсолютной ошибкой и относительной ошибкой на основе их расчета. Большинство измерений в научных экспериментах содержат ошибки из-за инструментальных ошибок и ошибок человека. В некоторых случаях для конкретного измерительного прибора существует заранее определенное постоянное значение абсолютной погрешности. (Наименьшее показание. Например: — линейка = +/- 1 мм.) Это разница между истинным значением и экспериментальным значением. Однако относительная ошибка варьируется в зависимости от экспериментального значения и абсолютной ошибки. Он определяется отношением абсолютной ошибки к экспериментальному значению. Таким образом ключевое отличие между абсолютной ошибкой и относительной ошибкой, абсолютная ошибкаэтовеличина разницы между точным значением и приближением в то время как Относительная погрешность рассчитывается путем деления абсолютной погрешности на величину точного значения.

    Видео:Как ДВИ МГУ ломает судьбы. Разбор типичных ошибок на экзаменеСкачать

    Как ДВИ МГУ ломает судьбы. Разбор типичных ошибок на экзамене

    Что такое абсолютная ошибка?

    Абсолютная ошибка — это показатель неопределенности измерения. Другими словами, он измеряет, в какой степени истинное значение может отличаться от экспериментального. Абсолютная погрешность выражается в тех же единицах, что и измерения.

    Пример: Допустим, мы хотим измерить длину карандаша с помощью линейки с миллиметровыми отметками. Мы можем измерить его длину с точностью до миллиметра. Если вы получите значение 125 мм, оно будет выражено как 125 +/- 1 мм. Абсолютная погрешность составляет +/- 1 мм.

    Видео:Множественная регрессия в ExcelСкачать

    Множественная регрессия в Excel

    Что такое относительная ошибка?

    Относительная ошибка зависит от двух переменных; абсолютная погрешность и экспериментальное значение измерения. Следовательно, эти два параметра должны быть известны для расчета относительной ошибки. Относительная ошибка вычисляется как отношение абсолютной ошибки к экспериментальному значению. Выражается в процентах или дробях; так что в нем нет единиц.

    Относительная ошибка интегрирования Монте-Карло для вычисления числа пи

    Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

    Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

    В чем разница между абсолютной ошибкой и относительной ошибкой?

    Определение абсолютной ошибки и относительной ошибки

    Абсолютная ошибка:

    Абсолютная ошибка — это значение Δx (+ или — значение), где x — переменная; это физическая погрешность измерения. Он также известен как фактическая ошибка измерения.

    Другими словами, это разница между истинным значением и экспериментальным значением.

    Абсолютная ошибка = фактическое значение — измеренное значение

    Относительная ошибка:

    Относительная ошибка — это отношение абсолютной ошибки (Δx) к измеренному значению (x). Он выражается либо в процентах (процентная погрешность), либо в виде дроби (дробная погрешность).

    Единицы и расчет абсолютной погрешности и относительной погрешности

    Единицы

    Абсолютная ошибка:

    Он имеет те же единицы измерения, что и измеренное значение. Например, если вы измеряете длину книги в сантиметрах (см), абсолютная ошибка также будет иметь те же единицы.

    Относительная ошибка:

    Относительная погрешность может быть выражена в виде дроби или процента. Однако у обоих нет единицы в стоимости.

    Расчет ошибок

    Пример 1:Фактическая длина земли составляет 500 футов. Измерительный прибор показывает, что длина составляет 508 футов.

    Абсолютная ошибка:

    Абсолютная ошибка = [Фактическое значение — измеренное значение] = 508 футов = 8 футов

    Относительная ошибка:

    Студент хотел измерить высоту стены в комнате. Он измерил значение с помощью метровой линейки (с точностью до миллиметра), оно составило 3,215 м.

    Абсолютная ошибка:

    Абсолютная погрешность = +/- 1 мм = +/- 0,001 м (Наименьшее значение, которое можно прочитать с помощью линейки)

    Относительная ошибка:

    Относительная погрешность = Абсолютная погрешность ÷ Экспериментальное значение = 0,001 м ÷ 3,215 м * 100 = 0,0003%

    📹 Видео

    РегрессияСкачать

    Регрессия

    Интенсив СИРОП по математике. Профильный ЕГЭ. Сложные уравнения задача 12Скачать

    Интенсив СИРОП по математике. Профильный ЕГЭ. Сложные уравнения задача 12

    Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2Скачать

    Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2

    Линейная регрессияСкачать

    Линейная регрессия

    Коэффициент детерминации. Основы эконометрикиСкачать

    Коэффициент детерминации. Основы эконометрики

    Линейные и квадратные уравнения №9 из ОГЭ.Скачать

    Линейные и квадратные уравнения №9 из ОГЭ.

    Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать

    Корреляционно-регрессионный анализ многомерных данных в Excel

    Как в экселе исправить ошибку #ЗНАЧ!Скачать

    Как в экселе исправить ошибку #ЗНАЧ!

    Как исправить ошибки в формулах Excel I Козлов А.О.Скачать

    Как исправить ошибки в формулах Excel I Козлов А.О.
  • Поделиться или сохранить к себе: