Рассмотрим уравнение вида
F ( x , y , y ‘ ) = 0 ,
не разрешённое относительно производной. Если попытаться выразить из него y ‘ , то можно получить , вообще говоря , несколько уравнений
Геометрически это означает , что в каждой точке задаётся несколько направлений поля (см.рис.2).
Следовательно через любую точку M ( x , y ) может проходить несколько интегральных кривых . Для того, чтобы выделить из этого множества единственную интегральную кривую, проходящую через заданную точку M0 ( x0 , y0) , надо помимо значений ( x0 , y0 ) дополнительно задать в этой точке направление поля y ‘ ( x0) = y ‘0 .
Задача Коши . Найти решение уравнения F ( x , y , y ‘ ) = 0, удовлетворяющее начальным условиям y ( x0) = y0 и y ‘ ( x0) = y ‘0 , где y ‘0 — решение уравнения F ( x0 , y0 , y ‘ ) = 0.
Теорема существования и единственности решения задачи Коши.
Пусть в некоторой окрестности U точки (x0 , y0 , y ‘0 ), где y ‘0 — решение уравнения F ( x0 , y0 , y ‘ ) = 0, выполнены условия :
1) F( x , y , y ‘ ) определена, непрерывна и имеет непрерывные частные производные F’y и F’y ‘ по совокупности переменных ( x , y , y ‘ ) ;
2) значение производной Fy‘‘ (x0 , y0 , y’0 )0.
Тогда в некоторой окрестности точки x0 существует единственное решение уравнения F (x, y, y’) = 0, удовлетворяющее условиям y(x0) = y0 и y’ (x0) = y’0 .
Метод введения параметра.
На практике при решении уравнений F( x , y , y ‘ ) = 0 часто используют следующий метод.
Предположим , что уравнение F( x , y , y ‘ ) = 0 “легко” решить относительно y : y = f ( x , y ‘ ). Тогда введем замену y ‘ = p ( параметр зависит от x ). Предполагая, что дифференциальное уравнение имеет решение y = y ( x ) , получим ( в силу уравнения )
Из этих равенств выражаем :
Это уравнение разрешено относительно производной . Пусть его общее решение имеет вид p = p ( x , C ) .Тогда общее решение заданного уравнения можно записать в виде y =f ( x , p ( x , C ) ). Решение найдено.
Таким методом можно решать , в частности , уравнения Лагранжа и Клеро.
Уравнение вида называется уравнением Лагранжа. Оно является линейным относительно переменных x и y . Частным случаем этого уравнения является уравнение Клеро. Оно имеет вид :
Пример 1 . Решить уравнение
Решение. Выразим из уравнения (5) переменную y :
.Заменим и получим
Продифференцируем его по x :
Из этих равенств получаем :
После подстановки этих выражений в (6) будем иметь
Ответ :
Этим методом можно также решать уравнения , в которых «легко» выражается переменная x . Рассмотрим
Пример 2 . Решить уравнение
Решение . Выразим из уравнения (7) переменную x и введём параметр p :
Продифференцируем уравнение (8) по p :
Отсюда в силу равенства dy = p dx получим :
Проинтегрируем это уравнение :
Таким образом , с учётом ( 8 ) , получаем общее решение в параметрическом виде :
Примеры. Решить уравнения :
Уравнения в полных дифференциалах.
Если в уравнении (9) функции
В этом случае уравнение (9) называют уравнением в полных дифференциалах. После интегрирования получим общее решение уравнения
Теорема 1. Пусть функции непрерывные в некоторой односвязной области . Тогда необходимым и достаточным условием того, что уравнение (9) — в полных дифференциалах , является условие
Доказательство. 1. Необходимость.
Если выбрать функцию так, чтобы
то и , следовательно ,
Таким образом , в уравнении (9)
Теорема 1 доказана.
Из теоремы следует , что общее решение уравнения (9) можно записать в виде
если Функцию U можно также представить в виде
Предположим , что . Тогда можно попытаться найти такую функцию , чтобы . Функция называется интегрирующим множителем . В этом случае мы получаем уравнение
в полных дифференциалах. Следовательно, в силу теоремы 1,
Это уравнение позволяет найти интегрирующий множитель. Рассмотрим
Пример. Решить уравнение
Решение. Простой проверкой убеждаемся , что (10) не является уравнением в полных дифференциалах. Умножим его на неизвестную функцию :
Попробуем найти из уравнения :
Пусть . Обозначим через и получим
После подстановки этих выражений в (11) будем иметь :
Проинтегрируем полученное уравнение :
Таким образом, интегрирующий множитель можно взять в виде
Умножим теперь уравнение (10) на функцию
Теорема 2. Если функции M и N непрерывные , имеют непрерывные частные производные первого порядка по x и по y , и , то интегрирующий множитель существует.
Замечание. Точка ( x0 , y0 ), в которой M ( x0 , y0 ) = N ( x0 , y0 ) = 0 является особой точкой уравнения (9). Поведение решений в окрестности особой точки изучается в лекции 3.
Примеры. Решить дифференциальные уравнения :
Видео:Решение уравнения ЛагранжаСкачать
Дифференциальное уравнение Клеро
Видео:Курс по ОДУ: Уравнения Клеро и Лагранжа | Занятие 8Скачать
Решение дифференциального уравнения Клеро
Рассмотрим уравнение Клеро:
(1)
Не трудно убедиться, что его общее решение имеет вид:
(2)
Действительно, поскольку – постоянная, то – тоже постоянная. Тогда дифференцируя (2) имеем:
;
(3) .
Подставляя (2) и (3) в (1), получаем тождество:
.
Видео:14. Уравнения Лагранжа и КлероСкачать
Особое решение дифференциального уравнения Клеро
Уравнение Клеро может иметь особое решение. Как известно, если общее решение дифференциального уравнения имеет вид:
,
то особое решение может получиться исключением из уравнений:
;
.
В нашем случае, решение (2) можно записать в виде:
.
Тогда
.
Тогда особое решение может получиться, исключением из уравнений:
;
.
Поскольку возможны посторонние решения, то после нахождения особого решения, необходимо проверить, удовлетворяет ли он исходному уравнению (1).
Видео:Уравнение ЛагранжаСкачать
Пример
Решить уравнение:
(1.1)
Это уравнение Клеро. Его общее решение имеет вид:
Ищем особое решение. Перепишем общее решение в виде:
.
Дифференцируем по :
.
Тогда особое решение может получиться исключением из уравнений:
(1.2) ;
(1.3) .
Исключаем . Из уравнения (1.3) имеем:
(1.4) .
Возводим в квадрат и преобразуем:
;
;
. Отсюда следует, что .
Извлекаем квадратный корень:
(1.5) .
Поскольку мы возводили в квадрат, то, возможно, (1.5) содержит лишние решения, которые не удовлетворяют (1.4). Сейчас мы примем (1.5), а отсев лишних решений сделаем в самом конце.
Подставим (1.4) и (1.5) в (1.2):
.
Итак, особые решения имеют вид:
(1.6) .
Теперь сделаем проверку, чтобы выяснить, удовлетворяет ли исходному уравнению (1.1):
(1.1) .
Находим производную (1.6) и выполняем преобразования:
;
;
.
Подставляем в (1.1):
(1.7) .
При , . Уравнение (1.7) принимает вид:
.
Оно выполняется, если взять нижний знак:
.
То есть при , .
При , . Уравнение (1.7) принимает вид:
.
Оно выполняется, если взять верхний знак:
.
То есть при , .
Общее решение уравнения имеет вид:
При уравнение имеет особое решение:
.
При уравнение имеет особое решение:
.
Автор: Олег Одинцов . Опубликовано: 24-08-2012 Изменено: 10-04-2016
🎬 Видео
Дифференциальные уравнения не разрешенные относительно производной | poporyadku.schoolСкачать
9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.Скачать
Решение уравнения КлероСкачать
7.2. Уравнение Клеро: алгоритм решения и пример задачи, приводящей к уравнению КлероСкачать
Уравнения Лагранжа #1Скачать
Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать
Функция Лагранжа. Уравнения Лагранжа. Интегралы движения.Скачать
#Дифуры I. Урок 9. Уравнение РиккатиСкачать
Метод Лагранжа & Метод Бернулли ★ Решение линейных неоднородных дифференциальных уравненийСкачать
7.4. Уравнение ЛагранжаСкачать
Уравнения Лагранжа второго родаСкачать
Теормех. 2021-окт-15. Группа РФЗ. Уравнения Лагранжа.Скачать
Уравнения Лагранжа второго рода. Задача 1Скачать
19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать
Принцип наименьшего действия #2 - Уравнение Эйлера-ЛагранжаСкачать