Отделить корни уравнения графически и уточнить один из них методом половинного

Метод половинного деления (метод дихотомии или метод бисекции)

Теорема 2. Итерационный процесс половинного деления сходится к искомому корню ξ с любой наперед заданной точностью ε.
Доказательство: Рассмотрим последовательность чисел ξi являющихся приближением корня на i -ом шаге.
ξi=½(bi+ai), i=0,1.
где a0=a; b0=b; ai;bi — границы подынтервалов, в которых f(ai)f(bi) 0 мы ни задали, всегда можно найти такое n , что Отделить корни уравнения графически и уточнить один из них методом половинногоч.т.д.
Графически метод дихотомии выглядит следующим образом
Отделить корни уравнения графически и уточнить один из них методом половинного
|f(c)|≤δ f(a)f(c) 10 = 1024 ≈ 10 3 раз. За 20 итераций (n=2) уменьшается в 2 20 ≈ 10 6 раз.

Пример №1 . Найти экстремум функции: y=5x 2 -4x+1 методом дихотомии, если ε=0.1, а исходный интервал [0,10].

  • Решение
  • Видео решение

Пример №3 . Методом бисекции найти решение нелинейного уравнения на отрезке [a,b] с точностью ε = 10 -2 . Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε = 10 -4 . Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.
sqrt(t)+x 2 = 10, a = 2.6, b = 3

Найдем корни уравнения: Отделить корни уравнения графически и уточнить один из них методом половинного
Используем для этого Метод половинного деления (метод дихотомии)..
Считаем, что отделение корней произведено и на интервале [a,b] расположен один корень, который необходимо уточнить с погрешностью ε.
Итак, имеем f(a)f(b) 1 /2(a+b) и вычисляем f(c). Проверяем следующие условия:
1. Если |f(c)| 1 /2 n (b-a)
В качестве корня ξ. возьмем 1 /2(an+bn). Тогда погрешность определения корня будет равна (bn – an)/2. Если выполняется условие:
(bn – an)/2 1 /2(an+bn).
Решение.
Поскольку F(2.6)*F(3) 0, то a=2.8
Итерация 2.
Находим середину отрезка: c = (2.8 + 3)/2 = 2.9
F(x) = 0.113
F(c) = -0.487
Поскольку F(c)•F(x) 0, то a=2.825
Остальные расчеты сведем в таблицу.

Ncabf(c)f(x)
12.632.8-1.6275-0.4867
22.832.9-0.48670.1129
32.82.92.850.1129-0.1893
42.82.852.825-0.1893-0.3386
52.8252.852.8375-0.3386-0.2641
62.83752.852.8438-0.2641-0.2267

Ответ: x = 2.8438; F(x) = -0.2267
Решение было получено и оформлено с помощью сервиса Метод Ньютона онлайн

Пример №2 . Локализовать корень нелинейного уравнения f(x) = 0 и найти его методом бисекции с точностью ε1 = 0,01. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε2 = 0,0001. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности ε2 число итераций.

Видео:Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деленияСкачать

Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деления

Метод половинного деления. Один из методов уточнения корней уравнения (1) – метод половинного деления

Один из методов уточнения корней уравнения (1) – метод половинного деления. Исходные данные: уравнение f(x)=0; отрезок [a,b], на котором существует единственный корень уравнения (корень отделен), т.е. f(x) удовлетворяет условиям: f(x) непрерывна на [a,b], монотонна нем и f(a)f(b) 0 (знаки функции f(x) в точках a и c одинаковы), то левый конец отрезка заменяется на середину (а=с) иначе правый конец заменяется на середину (b=c).

4. Если длина отрезка не превосходит заданной точности (b-a 4 -x 3 -2x 2 +3x-3=0.

Полагая f(x)= x 4 -x 3 -2x 2 +3x-3, имеем f’(x)=4x 3 -3x 2 -4x+3.

Найдем нули производной: 4x 3 -3x 2 -4x+3=0; 4x(x 2 -1)-3(x 2 -1)=0;(x 2 -1)(4x-3)=0;

Составим таблицу знаков функции f(x):

x-∞-13/4+∞
f(x)++

Из таблицы видно, что уравнение имеет два действительных корня x1 Отделить корни уравнения графически и уточнить один из них методом половинного(-∞;-1) и x2 Отделить корни уравнения графически и уточнить один из них методом половинного(1;+ ∞). Уменьшим промежутки, на которых находятся корни, до единичной длины:

x-2-1
f(x)++

Следовательно, x1 Отделить корни уравнения графически и уточнить один из них методом половинного(-2;-1) и x2 Отделить корни уравнения графически и уточнить один из них методом половинного(1;2).

Уточним один из корней, например, x1, методом половинного деления до сотых долей. Все вычисления удобно производить, используя следующую таблицу:

Отделить корни уравнения графически и уточнить один из них методом половинного

Второй корень, уточняемый аналогичным образом, равен 1,73.

2. Отделить корни графически и уточнить их методом половинного деления.

Отделить корни уравнения графически и уточнить один из них методом половинного

Перепишем уравнение в виде Отделить корни уравнения графически и уточнить один из них методом половинного. Обозначим Отделить корни уравнения графически и уточнить один из них методом половинного, Отделить корни уравнения графически и уточнить один из них методом половинногои построим графики этих функций:

Отделить корни уравнения графически и уточнить один из них методом половинного Отделить корни уравнения графически и уточнить один из них методом половинногоОтделить корни уравнения графически и уточнить один из них методом половинного

Из рисунка видно, что уравнение имеет три корня: точный x=0 и еще два, расположенных симметрично на отрезках [-3;-2] и [2;3].

Уточним корень на отрезке [2;3]:

Отделить корни уравнения графически и уточнить один из них методом половинного

Задания

1)Отделить корни аналитически и уточнить их методом половинного деления до 0,01, используя электронные таблицы.

1. 3x 4 +4x 3 -12x 2 -5=0

2. 2x 3 -9x 2 -60x+1=0

5. 3x 4 +3x 3 +6x 2 -10=0

7. x 4 +4x 3 -3x 2 -17=0

8. x 4 -x 3 -2x 2 +3x-3=0

9. 3x 4 +4x 3 -12x 2 +1=0

10. 3x 4 -8x 3 -18x 2 +2=0

11. 2x 4 -3x 3 +8x 2 -1=0

12. 2x 4 +8x 3 +3x 2 -1=0

13. x 4 -4x 3 -8x 2 +1=0

14. 3x 4 +4x 3 -12x 2 -5=0

15. 2x 3 -8x 2 -30x+1=0

17. 2x 4 -2x 2 -7=0

18. 3x 4 +8x 3 +6x 2 -10=0

19. x 4 -18x 2 +6=0

20. x 4 +4x 3 -3x-7=0

21. x 4 -2x 3 -x 2 +3x-3=0

22. 3x 4 +4x 3 -3x 2 -17=0

23. 2x 4 -5x 3 -12x 2 +2=0

24. 3x 4 +9x 3 -14x 2 +1=0

25. x 4 +2x 3 -x-1=0

26. x 4 +8x 3 -6x 2 -72x=0

28. x 4 -3x 2 +75x-10000=0

2) Отделить корни графически и уточнить их методом половинного деления до 0.01, используя электронные таблицы.

Отделить корни уравнения графически и уточнить один из них методом половинного

Лабораторная работа №3

Решение нелинейных уравнений методом хорд

Краткая теория

Будем рассматривать уравнения вида f(x)=0 (1). Пусть корень уравнения отделен и находится на отрезке [a,b]. Уточним этот корень методом хорд. Геометрически метод хорд означает замену на отрезке [a,b] графика функции y=f(x) хордой, проведенной через точки (a,f(a)) и (b,f(b)):

Отделить корни уравнения графически и уточнить один из них методом половинного

Здесь ξ — точный корень уравнения (1), ­­x Отделить корни уравнения графически и уточнить один из них методом половинного— начальное приближение к корню, x Отделить корни уравнения графически и уточнить один из них методом половинного-точка пересечения хорды с осью Ох – первое приближение к корню. Далее метод хорд применяется на отрезке [a, x Отделить корни уравнения графически и уточнить один из них методом половинного] и получается второе приближение к корню — x Отделить корни уравнения графически и уточнить один из них методом половинного. В случае, изображенном на рис.1, конец отрезка а остается неподвижным. Из уравнения хорды и условия, что точка (x Отделить корни уравнения графически и уточнить один из них методом половинного,0) принадлежит хорде, получается формула для вычисления n-го приближения к корню для случая, когда а – неподвижный конец: x Отделить корни уравнения графически и уточнить один из них методом половинного=b,

x Отделить корни уравнения графически и уточнить один из них методом половинного=a- Отделить корни уравнения графически и уточнить один из них методом половинного (2)

Для случая неподвижного конца b используется формула: x Отделить корни уравнения графически и уточнить один из них методом половинного=a,

x Отделить корни уравнения графически и уточнить один из них методом половинного=x Отделить корни уравнения графически и уточнить один из них методом половинногоОтделить корни уравнения графически и уточнить один из них методом половинного (3)

Правило определения неподвижного конца хорды:

Если знаки первой и второй производных функции f(x) на отрезке [a, b] совпадают, то неподвижным являются конец b, иначе — конец a.

Метод хорд обеспечивает на n-м шаге абсолютную погрешность приближения к корню уравнения (1), не превосходящую длину n-го отрезка: Отделить корни уравнения графически и уточнить один из них методом половинного

1. Определить, какой конец отрезка будет неподвижным и принять за x Отделить корни уравнения графически и уточнить один из них методом половинногодругой конец отрезка.

2. Вычислить новое приближение к корню x Отделить корни уравнения графически и уточнить один из них методом половинногопо формуле (2) или (3).

3. Если длина отрезка [x Отделить корни уравнения графически и уточнить один из них методом половинного, x Отделить корни уравнения графически и уточнить один из них методом половинного] не превосходит заданной точности, то процесс заканчивается и в качестве точного корня можно взять x Отделить корни уравнения графически и уточнить один из них методом половинногоили x Отделить корни уравнения графически и уточнить один из них методом половинного, иначе идти к п.2

Решение одного варианта

1.Отделить корни графически и уточнить их методом хорд с точностью до 0.001: tg(0.5x+0.1)=x Отделить корни уравнения графически и уточнить один из них методом половинного.

Отделим корень графически. Построим графики функций

y Отделить корни уравнения графически и уточнить один из них методом половинного=tg(0.5x+0.1) и y Отделить корни уравнения графически и уточнить один из них методом половинного=x Отделить корни уравнения графически и уточнить один из них методом половинного:

Отделить корни уравнения графически и уточнить один из них методом половинного

Таким образом, уравнение имеет два корня

Отделить корни уравнения графически и уточнить один из них методом половинногоx Отделить корни уравнения графически и уточнить один из них методом половинного Отделить корни уравнения графически и уточнить один из них методом половинного[0.5; 1] и x Отделить корни уравнения графически и уточнить один из них методом половинного Отделить корни уравнения графически и уточнить один из них методом половинного[-0.5; 0]

Чтобы уточнить этот корень методом хорд, определим знаки первой и второй производной функции f(x)= tg(0.5x+0.1)-x Отделить корни уравнения графически и уточнить один из них методом половинногона промежутке [0.5;1]. Имеем

Отделить корни уравнения графически и уточнить один из них методом половинногоf ‘(x)=0.5/cos Отделить корни уравнения графически и уточнить один из них методом половинного(0.5x+0.1)-2x;

3. Отделить корни уравнения графически и уточнить один из них методом половинного­­­

6. Отделить корни уравнения графически и уточнить один из них методом половинного

7. Отделить корни уравнения графически и уточнить один из них методом половинного

8. Отделить корни уравнения графически и уточнить один из них методом половинного

9. Отделить корни уравнения графически и уточнить один из них методом половинного

10. Отделить корни уравнения графически и уточнить один из них методом половинного

11. Отделить корни уравнения графически и уточнить один из них методом половинного

12. Отделить корни уравнения графически и уточнить один из них методом половинного

13. x lgx — 1.2 = 0

14. 1.8x 2 – sin10x = 0

15. ctgx – x / 4 = 0

16. tg(0.3x + 0.4) = x 2

17. x – 20sinx = 0

18. ctgx – x / 3 = 0

19. tg(0.47x + 0.2) = x 2

20. x 2 + 4sinx = 0

21. ctgx – x / 2 = 0

22. 2x – lgx – 7 = 0

24. 3x – cosx – 1 = 0

26. 10cosx-0,1x 2 =0

2)Отделить корни аналитически и уточнить их методом хорд до 0.001:

Видео:Метод половинного деления. ДихотомияСкачать

Метод половинного деления. Дихотомия

Численные методы решения нелинейных уравнений

В этом разделе приведены примеры решенных задач по теме нахождения корней нелинейных уравнений численными методами. На первом этапе обычно происходит локализация (отделение) корней (графически или аналитически), на втором — уточнение (поиск) корней разными методами: Ньютона, Стеффенсена, секущих, хорд, касательных, простой итерации.

Видео:Метод половинного деления решение нелинейного уравненияСкачать

Метод половинного деления решение нелинейного уравнения

Примеры приближенных решений нелинейных уравнений онлайн

Задача 1. Методом бисекции найти решение нелинейного уравнения на отрезке $[a;b]$ с точностью $varepsilon = 10^$. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью $varepsilon=10^$. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.

Задача 2. Отделить корни нелинейного уравнения аналитически $2 arcctg x -x+3=0$.

Задача 3. Отделить корни нелинейного уравнения аналитически и уточнить один из них методом проб с точностью до 0,01. $$3x^4-8x^3-18x^2+2=0.$$

Задача 4. Отделить корни нелинейного уравнения графически (например, в среде EXCEL) уточнить один из них методом проб с точностью до 0,01. $$x^2-20 sin x =0.$$

Задача 5. Отделите корни уравнения графически и уточните один из них методом хорд с точностью до 0,001. Уточните один из корней этого уравнения методом касательных с точностью до 0,001. $$ sqrt — cos 0.387 x =0.$$

Задача 6.Отделить корни уравнения графически и уточнить один из них методом итераций с точностью до 0,001. $$sqrt=frac.$$

Задача 7. На отрезке $[0;2]$ методом Ньютона найти корень уравнения $-x^3-2x^2-4x+10=0$ с точностью 0,01.

Задача 8. Методом хорд найти отрицательный корень уравнения $x^3-2x^2-4x+7=0$ с точностью 0,0001. Требуется предварительное построение графика функции и отделение корней.

Задача 9. Решить нелинейные уравнения с точностью до 0.001. $$1), x^3-12x-5=0, (x gt 0), , 2), tan x -1/x=0. $$

🎥 Видео

Метод половинного деления - ВизуализацияСкачать

Метод половинного деления - Визуализация

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравненияСкачать

8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравнения

7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)

Численное решение уравнений, урок 2/5. Метод деления отрезка пополамСкачать

Численное решение уравнений, урок 2/5. Метод деления отрезка пополам

Повысь свой уровень по теме КОРНИ | Математика | TutorOnlineСкачать

Повысь свой уровень по теме КОРНИ | Математика | TutorOnline

Алгоритмы С#. Метод Ньютона для решения систем уравненийСкачать

Алгоритмы С#. Метод Ньютона для решения систем уравнений

Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Урок 10. C++ Метод половинного деленияСкачать

Урок 10.  C++ Метод половинного деления

Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

Как найти корни уравнения в Excel с помощью Подбора параметра

7 Метод половинного деления Mathcad Численные методы решения нелинейного уравненияСкачать

7 Метод половинного деления Mathcad Численные методы решения нелинейного уравнения

6 Метод половинного деления C++ Численные методы решения нелинейного уравненияСкачать

6 Метод половинного деления C++ Численные методы решения нелинейного уравнения

10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Метод касательных (метод Ньютона)Скачать

Метод касательных (метод Ньютона)
Поделиться или сохранить к себе: