Отделить корни уравнения графически и уточнить один из них

Численные методы решения нелинейных уравнений

В этом разделе приведены примеры решенных задач по теме нахождения корней нелинейных уравнений численными методами. На первом этапе обычно происходит локализация (отделение) корней (графически или аналитически), на втором — уточнение (поиск) корней разными методами: Ньютона, Стеффенсена, секущих, хорд, касательных, простой итерации.

Видео:7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Примеры приближенных решений нелинейных уравнений онлайн

Задача 1. Методом бисекции найти решение нелинейного уравнения на отрезке $[a;b]$ с точностью $varepsilon = 10^$. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью $varepsilon=10^$. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.

Задача 2. Отделить корни нелинейного уравнения аналитически $2 arcctg x -x+3=0$.

Задача 3. Отделить корни нелинейного уравнения аналитически и уточнить один из них методом проб с точностью до 0,01. $$3x^4-8x^3-18x^2+2=0.$$

Задача 4. Отделить корни нелинейного уравнения графически (например, в среде EXCEL) уточнить один из них методом проб с точностью до 0,01. $$x^2-20 sin x =0.$$

Задача 5. Отделите корни уравнения графически и уточните один из них методом хорд с точностью до 0,001. Уточните один из корней этого уравнения методом касательных с точностью до 0,001. $$ sqrt — cos 0.387 x =0.$$

Задача 6.Отделить корни уравнения графически и уточнить один из них методом итераций с точностью до 0,001. $$sqrt=frac.$$

Задача 7. На отрезке $[0;2]$ методом Ньютона найти корень уравнения $-x^3-2x^2-4x+10=0$ с точностью 0,01.

Задача 8. Методом хорд найти отрицательный корень уравнения $x^3-2x^2-4x+7=0$ с точностью 0,0001. Требуется предварительное построение графика функции и отделение корней.

Задача 9. Решить нелинейные уравнения с точностью до 0.001. $$1), x^3-12x-5=0, (x gt 0), , 2), tan x -1/x=0. $$

Видео:Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деленияСкачать

Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деления

математика. Контрольная работа № 1. Задание 1 Определить корни уравнения графически и уточнить один из них методом итераций с точностью до 0,001. Решение

НазваниеЗадание 1 Определить корни уравнения графически и уточнить один из них методом итераций с точностью до 0,001. Решение
Анкорматематика
Дата19.03.2022
Размер89.95 Kb.
Формат файлаОтделить корни уравнения графически и уточнить один из них
Имя файлаКонтрольная работа № 1.docx
ТипРешение
#404383
Подборка по базе: практическое задание №4 Изъюров Л.С..docx, Практическое задание 1.doc, Практическое задание_2математика_Зейналова_Лейла.doc, Аналитическое задание педагогика ипз.docx, Практическое задание 2.rtf, Домашнее задание по колледжу.docx, Ответ на задание 1.1.docx, Практическое задание к теме 2.docx, Практическое задание №1.docx, Практическая работа №3. Задание №1.docx

Определить корни уравнения графически и уточнить один из них методом итераций с точностью до 0,001.

Отделить корни уравнения графически и уточнить один из них

Сначала нужно отделить решения. Удобно записать уравнение в виде Отделить корни уравнения графически и уточнить один из нихи построить графики двух элементарных функций

Отделить корни уравнения графически и уточнить один из них

Отделить корни уравнения графически и уточнить один из них

Из графика следует, что корень один: x * ∈ [0;1].

Представим уравнение в форме:

Найдем максимальное значение производной от функции
f(x) = x*(x+1) 2 -1

Значение λ = 1/(8) ≈ 0.125

Таким образом, решаем следующее уравнение:

Поскольку F(0)*F(1)
Остальные расчеты сведем в таблицу.

NXF(x)
10-1
20.125-0.8418
30.2302-0.6516
40.3117-0.4638
50.3696-0.3066
60.408-0.1913
70.4319-0.1145
80.4462-0.0668
90.4545-0.03833
100.4593-0.02178
110.4621-0.01231
120.4636-0.00693

Ответ: x = 0.46359395923842; F(x) = -0.00693
Сходимость:
Отделить корни уравнения графически и уточнить один из них

Отделить корни уравнения графически и уточнить один из них методом касательных с точностью до 0,001

Отделить корни уравнения графически и уточнить один из них

Сначала нужно отделить решения. Удобно записать уравнение в виде Отделить корни уравнения графически и уточнить один из нихи построить графики двух элементарных функций

Отделить корни уравнения графически и уточнить один из них

Отделить корни уравнения графически и уточнить один из них

Из графика следует, что корень множество, возьмем: x * ∈ [0;1].

Сначала нужно выбрать начальное приближение.

Отделить корни уравнения графически и уточнить один из них

Отделить корни уравнения графически и уточнить один из них

Отделить корни уравнения графически и уточнить один из них

Вычислим несколько приближений:

Отделить корни уравнения графически и уточнить один из них

Решение получено за 4 итерации, так как поправка стала меньше заданной точности: Отделить корни уравнения графически и уточнить один из них

Методом итераций решить систему линейныx уравнений с точностью до 0,001.

Отделить корни уравнения графически и уточнить один из них

Приведем к виду:

На главной диагонали матрицы присутствует нулевой элемент. Его необходимо исключить.
Вычисления заканчиваются по критерию:

Отделить корни уравнения графически и уточнить один из них

Отделить корни уравнения графически и уточнить один из них
a = 0.348+0.522+1.391 = 2.2609
Отделить корни уравнения графически и уточнить один из них

Поскольку 2.2609>1, то скорость итерационного процесса будет низкой. Необходимо сделать так, чтобы a → 0. Руководствуясь этим соображением, целесообразно сделать диагональное преобладание возможно более значительным (например, умножить какую-нибудь строку на коэффициент и прибавить к другой).
Покажем вычисления на примере нескольких итераций.

N=1
x 1 =-5.261 — 0*(-0.609) — 0*0.261 — 0*(-0.522)=-5.261
x 2 =2.25 — 0*0.375 — 0*0 — 0*(-0.563)=2.25
x 3 =2.522 — 0*0.348 — 0*(-0.522) — 0*1.391=2.522
x 4 =-1.56 — 0*0.25 — 0*0.22 — 0*0.14=-1.56

N=2
x 1 =-5.261 — 2.25*(-0.609) — 2.522*0.261 — (-1.56)*(-0.522)=-5.363
x 2 =2.25 — (-5.261)*0.375 — 2.522*0 — (-1.56)*(-0.563)=3.345
x 3 =2.522 — (-5.261)*0.348 — 2.25*(-0.522) — (-1.56)*1.391=7.696
x 4 =-1.56 — (-5.261)*0.25 — 2.25*0.22 — 2.522*0.14=-1.093

N=3
x 1 =-5.261 — 3.345*(-0.609) — 7.696*0.261 — (-1.093)*(-0.522)=-5.802
x 2 =2.25 — (-5.363)*0.375 — 7.696*0 — (-1.093)*(-0.563)=3.646
x 3 =2.522 — (-5.363)*0.348 — 3.345*(-0.522) — (-1.093)*1.391=7.653
x 4 =-1.56 — (-5.363)*0.25 — 3.345*0.22 — 7.696*0.14=-2.033

Остальные расчеты сведем в таблицу.

Nx1x2x3e1e2e3
00000
1-5.2612.252.522-1.565.2612.252.5221.56
2-5.3633.3457.696-1.0930.1021.0955.174-0.467
3-5.8023.6467.653-2.0330.4390.301-0.0430.94
4-6.0983.2839.27-1.9830.296-0.3641.617-0.0496
5-6.7163.4219.115-2.0550.6180.139-0.1560.0724
6-6.6283.6129.503-1.91-0.08740.1910.388-0.146
7-6.5373.6619.369-2.028-0.0910.0492-0.1340.118
8-6.5343.5619.527-2.043-0.00311-0.1010.1580.0149
9-6.6453.5519.495-2.0440.11-0.00953-0.03290.000829
10-6.6423.5929.529-2.009-0.002350.04090.0345-0.0343
11-6.6093.6119.502-2.024-0.03380.0184-0.02720.0144
12-6.5983.599.52-2.032-0.0108-0.02080.01790.00869
13-6.623.5819.517-2.0330.0219-0.00892-0.00250.000629
14-6.6253.5899.521-2.0250.005110.007840.00382-0.00777
15-6.6173.5959.516-2.026-0.007830.00629-0.004950.000983
16-6.6123.5929.518-2.029-0.00461-0.003490.001920.00265
17-6.6163.5889.518-2.030.00401-0.003220.0002620.000653
18-6.6193.5899.519-2.0280.002370.001140.000624-0.00167
19-6.6173.5919.518-2.028-0.00140.00183-0.000912-0.000255
20-6.6163.5919.518-2.028-0.00148-0.0003820.0001130.000625
21-6.6163.599.518-2.0290.000588-0.0009080.0001540.000303

Для оценки погрешности вычисляем коэффициент α:
Отделить корни уравнения графически и уточнить один из них
max[|x 20 ,x 21 |] = ρ(x 20 , x 21 ) = |-2.029 — (-2.028)| = 0.000908

Отделить корни уравнения графически и уточнить один из них

Методом Гаусса-Зейделя решить с точностью 0,001 систему линейных уравнений, приведя ее к виду, удобному для итераций.

Отделить корни уравнения графически и уточнить один из них

Приведем к виду:

Покажем вычисления на примере нескольких итераций.

N=1
x 1 =-1.143 — 0*1.214 — 0*2.071=-1.143
x 2 =0.767 — (-1.143)*0.164 — 0*(-0.315)=0.955
x 3 =-1.216 — (-1.143)*(-0.405) — 0.955*(-0.622)=-1.086

N=2
x 1 =-1.143 — 0.955*1.214 — (-1.086)*2.071=-0.0531
x 2 =0.767 — (-0.0531)*0.164 — (-1.086)*(-0.315)=0.434
x 3 =-1.216 — (-0.0531)*(-0.405) — 0.434*(-0.622)=-0.968

N=3
x 1 =-1.143 — 0.434*1.214 — (-0.968)*2.071=0.336
x 2 =0.767 — 0.336*0.164 — (-0.968)*(-0.315)=0.407
x 3 =-1.216 — 0.336*(-0.405) — 0.407*(-0.622)=-0.827

Остальные расчеты сведем в таблицу.

Nx1x2x3e1e2e3
0000
1-1.1430.955-1.0861.1430.9551.086
2-0.05310.434-0.968-1.09-0.521-0.118
30.3360.407-0.8270.283-0.0269-0.141
40.07640.494-0.878-0.260.08710.0511
50.07640.478-0.8883.3E-5-0.01610.00999
60.1170.468-0.8780.0402-0.00976-0.0102
70.1070.473-0.879-0.009370.004770.000834
80.1030.473-0.88-0.004060.0004050.0014
90.1060.472-0.880.0024-0.000834-0.000454
100.1060.473-0.887.2E-50.000131-0.000111

Для оценки погрешности вычисляем коэффициент α:

Отделить корни уравнения графически и уточнить один из них
max[|x 9 ,x 10 |] = ρ(x 9 , x 10 ) = |-0.88 — (-0.88)| = 0.000131

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Метод половинного деления. Один из методов уточнения корней уравнения (1) – метод половинного деления

Один из методов уточнения корней уравнения (1) – метод половинного деления. Исходные данные: уравнение f(x)=0; отрезок [a,b], на котором существует единственный корень уравнения (корень отделен), т.е. f(x) удовлетворяет условиям: f(x) непрерывна на [a,b], монотонна нем и f(a)f(b) 0 (знаки функции f(x) в точках a и c одинаковы), то левый конец отрезка заменяется на середину (а=с) иначе правый конец заменяется на середину (b=c).

4. Если длина отрезка не превосходит заданной точности (b-a 4 -x 3 -2x 2 +3x-3=0.

Полагая f(x)= x 4 -x 3 -2x 2 +3x-3, имеем f’(x)=4x 3 -3x 2 -4x+3.

Найдем нули производной: 4x 3 -3x 2 -4x+3=0; 4x(x 2 -1)-3(x 2 -1)=0;(x 2 -1)(4x-3)=0;

Составим таблицу знаков функции f(x):

x-∞-13/4+∞
f(x)++

Из таблицы видно, что уравнение имеет два действительных корня x1 Отделить корни уравнения графически и уточнить один из них(-∞;-1) и x2 Отделить корни уравнения графически и уточнить один из них(1;+ ∞). Уменьшим промежутки, на которых находятся корни, до единичной длины:

x-2-1
f(x)++

Следовательно, x1 Отделить корни уравнения графически и уточнить один из них(-2;-1) и x2 Отделить корни уравнения графически и уточнить один из них(1;2).

Уточним один из корней, например, x1, методом половинного деления до сотых долей. Все вычисления удобно производить, используя следующую таблицу:

Отделить корни уравнения графически и уточнить один из них

Второй корень, уточняемый аналогичным образом, равен 1,73.

2. Отделить корни графически и уточнить их методом половинного деления.

Отделить корни уравнения графически и уточнить один из них

Перепишем уравнение в виде Отделить корни уравнения графически и уточнить один из них. Обозначим Отделить корни уравнения графически и уточнить один из них, Отделить корни уравнения графически и уточнить один из нихи построим графики этих функций:

Отделить корни уравнения графически и уточнить один из них Отделить корни уравнения графически и уточнить один из нихОтделить корни уравнения графически и уточнить один из них

Из рисунка видно, что уравнение имеет три корня: точный x=0 и еще два, расположенных симметрично на отрезках [-3;-2] и [2;3].

Уточним корень на отрезке [2;3]:

Отделить корни уравнения графически и уточнить один из них

Задания

1)Отделить корни аналитически и уточнить их методом половинного деления до 0,01, используя электронные таблицы.

1. 3x 4 +4x 3 -12x 2 -5=0

2. 2x 3 -9x 2 -60x+1=0

5. 3x 4 +3x 3 +6x 2 -10=0

7. x 4 +4x 3 -3x 2 -17=0

8. x 4 -x 3 -2x 2 +3x-3=0

9. 3x 4 +4x 3 -12x 2 +1=0

10. 3x 4 -8x 3 -18x 2 +2=0

11. 2x 4 -3x 3 +8x 2 -1=0

12. 2x 4 +8x 3 +3x 2 -1=0

13. x 4 -4x 3 -8x 2 +1=0

14. 3x 4 +4x 3 -12x 2 -5=0

15. 2x 3 -8x 2 -30x+1=0

17. 2x 4 -2x 2 -7=0

18. 3x 4 +8x 3 +6x 2 -10=0

19. x 4 -18x 2 +6=0

20. x 4 +4x 3 -3x-7=0

21. x 4 -2x 3 -x 2 +3x-3=0

22. 3x 4 +4x 3 -3x 2 -17=0

23. 2x 4 -5x 3 -12x 2 +2=0

24. 3x 4 +9x 3 -14x 2 +1=0

25. x 4 +2x 3 -x-1=0

26. x 4 +8x 3 -6x 2 -72x=0

28. x 4 -3x 2 +75x-10000=0

2) Отделить корни графически и уточнить их методом половинного деления до 0.01, используя электронные таблицы.

Отделить корни уравнения графически и уточнить один из них

Лабораторная работа №3

Решение нелинейных уравнений методом хорд

Краткая теория

Будем рассматривать уравнения вида f(x)=0 (1). Пусть корень уравнения отделен и находится на отрезке [a,b]. Уточним этот корень методом хорд. Геометрически метод хорд означает замену на отрезке [a,b] графика функции y=f(x) хордой, проведенной через точки (a,f(a)) и (b,f(b)):

Отделить корни уравнения графически и уточнить один из них

Здесь ξ — точный корень уравнения (1), ­­x Отделить корни уравнения графически и уточнить один из них— начальное приближение к корню, x Отделить корни уравнения графически и уточнить один из них-точка пересечения хорды с осью Ох – первое приближение к корню. Далее метод хорд применяется на отрезке [a, x Отделить корни уравнения графически и уточнить один из них] и получается второе приближение к корню — x Отделить корни уравнения графически и уточнить один из них. В случае, изображенном на рис.1, конец отрезка а остается неподвижным. Из уравнения хорды и условия, что точка (x Отделить корни уравнения графически и уточнить один из них,0) принадлежит хорде, получается формула для вычисления n-го приближения к корню для случая, когда а – неподвижный конец: x Отделить корни уравнения графически и уточнить один из них=b,

x Отделить корни уравнения графически и уточнить один из них=a- Отделить корни уравнения графически и уточнить один из них (2)

Для случая неподвижного конца b используется формула: x Отделить корни уравнения графически и уточнить один из них=a,

x Отделить корни уравнения графически и уточнить один из них=x Отделить корни уравнения графически и уточнить один из нихОтделить корни уравнения графически и уточнить один из них (3)

Правило определения неподвижного конца хорды:

Если знаки первой и второй производных функции f(x) на отрезке [a, b] совпадают, то неподвижным являются конец b, иначе — конец a.

Метод хорд обеспечивает на n-м шаге абсолютную погрешность приближения к корню уравнения (1), не превосходящую длину n-го отрезка: Отделить корни уравнения графически и уточнить один из них

1. Определить, какой конец отрезка будет неподвижным и принять за x Отделить корни уравнения графически и уточнить один из нихдругой конец отрезка.

2. Вычислить новое приближение к корню x Отделить корни уравнения графически и уточнить один из нихпо формуле (2) или (3).

3. Если длина отрезка [x Отделить корни уравнения графически и уточнить один из них, x Отделить корни уравнения графически и уточнить один из них] не превосходит заданной точности, то процесс заканчивается и в качестве точного корня можно взять x Отделить корни уравнения графически и уточнить один из нихили x Отделить корни уравнения графически и уточнить один из них, иначе идти к п.2

Решение одного варианта

1.Отделить корни графически и уточнить их методом хорд с точностью до 0.001: tg(0.5x+0.1)=x Отделить корни уравнения графически и уточнить один из них.

Отделим корень графически. Построим графики функций

y Отделить корни уравнения графически и уточнить один из них=tg(0.5x+0.1) и y Отделить корни уравнения графически и уточнить один из них=x Отделить корни уравнения графически и уточнить один из них:

Отделить корни уравнения графически и уточнить один из них

Таким образом, уравнение имеет два корня

Отделить корни уравнения графически и уточнить один из нихx Отделить корни уравнения графически и уточнить один из них Отделить корни уравнения графически и уточнить один из них[0.5; 1] и x Отделить корни уравнения графически и уточнить один из них Отделить корни уравнения графически и уточнить один из них[-0.5; 0]

Чтобы уточнить этот корень методом хорд, определим знаки первой и второй производной функции f(x)= tg(0.5x+0.1)-x Отделить корни уравнения графически и уточнить один из нихна промежутке [0.5;1]. Имеем

Отделить корни уравнения графически и уточнить один из нихf ‘(x)=0.5/cos Отделить корни уравнения графически и уточнить один из них(0.5x+0.1)-2x;

3. Отделить корни уравнения графически и уточнить один из них­­­

6. Отделить корни уравнения графически и уточнить один из них

7. Отделить корни уравнения графически и уточнить один из них

8. Отделить корни уравнения графически и уточнить один из них

9. Отделить корни уравнения графически и уточнить один из них

10. Отделить корни уравнения графически и уточнить один из них

11. Отделить корни уравнения графически и уточнить один из них

12. Отделить корни уравнения графически и уточнить один из них

13. x lgx — 1.2 = 0

14. 1.8x 2 – sin10x = 0

15. ctgx – x / 4 = 0

16. tg(0.3x + 0.4) = x 2

17. x – 20sinx = 0

18. ctgx – x / 3 = 0

19. tg(0.47x + 0.2) = x 2

20. x 2 + 4sinx = 0

21. ctgx – x / 2 = 0

22. 2x – lgx – 7 = 0

24. 3x – cosx – 1 = 0

26. 10cosx-0,1x 2 =0

2)Отделить корни аналитически и уточнить их методом хорд до 0.001:

🔥 Видео

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)

Метод половинного деления. ДихотомияСкачать

Метод половинного деления. Дихотомия

Найти корень уравнения на заданном интервале (MathCad)Скачать

Найти корень уравнения на заданном интервале (MathCad)

АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать

АЛГЕБРА 7 класс : Уравнение и его корни | Видеоурок

Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

Как найти корни уравнения в Excel с помощью Подбора параметра

Метод половинного деления решение нелинейного уравненияСкачать

Метод половинного деления решение нелинейного уравнения

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Графический метод решения уравнений 8 классСкачать

Графический метод решения уравнений   8 класс

8 класс, 21 урок, Графическое решение уравненийСкачать

8 класс, 21 урок, Графическое решение уравнений

Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Метод касательных (метод Ньютона)Скачать

Метод касательных (метод Ньютона)

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Метод хордСкачать

Метод хорд
Поделиться или сохранить к себе: