Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Он включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.
Включение в уравнение множественной регрессии того или иного набора факторов связано, прежде всего, с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям.
1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.
Включение в модель факторов с высокой интеркорреляцией, может привести к нежелательным последствиям – система нормальных уравнений может повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии.
Если между факторами существует высокая корреляция (взаимосвязь), то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.
Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором M факторов, то для нее рассчитывается показатель детерминации , который фиксирует долю объясненной вариации результирующего показателя за счет рассматриваемых в регрессии M факторов. Влияние других, не учтенных в модели факторов, оценивается как с соответствующей остаточной дисперсией .
При дополнительном включении в регрессию фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться:
и .
Если же этого не происходит и данные показатели практически не отличаются друг от друга, то включаемый в анализ фактор не улучшает модель и практически является лишним фактором.
Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости. Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют статистики для параметров регрессии.
Коэффициенты интеркорреляции (т. е. коэффициенты корреляции между объясняющими переменными) позволяют исключать из модели дублирующие факторы. Считается, что две переменные явно коллинеарны, т. е. находятся между собой в линейной зависимости, если . Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.
Пусть, например, при изучении зависимости матрица парных коэффициентов корреляции оказалась следующей:
Видео:Множественная регрессия в ExcelСкачать
Уравнение множественной регрессии
Назначение сервиса . С помощью онлайн-калькулятора можно найти следующие показатели:
- уравнение множественной регрессии, матрица парных коэффициентов корреляции, средние коэффициенты эластичности для линейной регрессии;
- множественный коэффициент детерминации, доверительные интервалы для индивидуального и среднего значения результативного признака;
Кроме этого проводится проверка на автокорреляцию остатков и гетероскедастичность.
- Шаг №1
- Шаг №2
- Видеоинструкция
- Оформление Word
Отбор факторов обычно осуществляется в два этапа:
- теоретический анализ взаимосвязи результата и круга факторов, которые оказывают на него существенное влияние;
- количественная оценка взаимосвязи факторов с результатом. При линейной форме связи между признаками данный этап сводится к анализу корреляционной матрицы (матрицы парных линейных коэффициентов корреляции). Научно обоснованное решение задач подобного вида также осуществляется с помощью дисперсионного анализа — однофакторного, если проверяется существенность влияния того или иного фактора на рассматриваемый признак, или многофакторного в случае изучения влияния на него комбинации факторов.
Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:
- Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
- Каждый фактор должен быть достаточно тесно связан с результатом (т.е. коэффициент парной линейной корреляции между фактором и результатом должен быть существенным).
- Факторы не должны быть сильно коррелированы друг с другом, тем более находиться в строгой функциональной связи (т.е. они не должны быть интеркоррелированы). Разновидностью интеркоррелированности факторов является мультиколлинеарность — тесная линейная связь между факторами.
Пример . Постройте регрессионную модель с 2-мя объясняющими переменными (множественная регрессия). Определите теоретическое уравнение множественной регрессии. Оцените адекватность построенной модели.
Решение.
К исходной матрице X добавим единичный столбец, получив новую матрицу X
1 | 5 | 14.5 |
1 | 12 | 18 |
1 | 6 | 12 |
1 | 7 | 13 |
1 | 8 | 14 |
Матрица Y
9 |
13 |
16 |
14 |
21 |
Транспонируем матрицу X, получаем X T :
1 | 1 | 1 | 1 | 1 |
5 | 12 | 6 | 7 | 8 |
14.5 | 18 | 12 | 13 | 14 |
Умножаем матрицы, X T X = |
|
В матрице, (X T X) число 5, лежащее на пересечении 1-й строки и 1-го столбца, получено как сумма произведений элементов 1-й строки матрицы X T и 1-го столбца матрицы X
Умножаем матрицы, X T Y = |
|
Находим обратную матрицу (X T X) -1
13.99 | 0.64 | -1.3 |
0.64 | 0.1 | -0.0988 |
-1.3 | -0.0988 | 0.14 |
Вектор оценок коэффициентов регрессии равен
(X T X) -1 X T Y = y(x) = |
| * |
| = |
|
Получили оценку уравнения регрессии: Y = 34.66 + 1.97X1-2.45X2
Оценка значимости уравнения множественной регрессии осуществляется путем проверки гипотезы о равенстве нулю коэффициент детерминации рассчитанного по данным генеральной совокупности. Для ее проверки используют F-критерий Фишера.
R 2 = 1 — s 2 e/∑(yi — yср) 2 = 1 — 33.18/77.2 = 0.57
F = R 2 /(1 — R 2 )*(n — m -1)/m = 0.57/(1 — 0.57)*(5-2-1)/2 = 1.33
Табличное значение при степенях свободы k1 = 2 и k2 = n-m-1 = 5 — 2 -1 = 2, Fkp(2;2) = 19
Поскольку фактическое значение F = 1.33 Пример №2 . Приведены данные за 15 лет по темпам прироста заработной платы Y (%), производительности труда X1 (%), а также по уровню инфляции X2 (%).
Год | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
X1 | 3,5 | 2,8 | 6,3 | 4,5 | 3,1 | 1,5 | 7,6 | 6,7 | 4,2 | 2,7 | 4,5 | 3,5 | 5,0 | 2,3 | 2,8 |
X2 | 4,5 | 3,0 | 3,1 | 3,8 | 3,8 | 1,1 | 2,3 | 3,6 | 7,5 | 8,0 | 3,9 | 4,7 | 6,1 | 6,9 | 3,5 |
Y | 9,0 | 6,0 | 8,9 | 9,0 | 7,1 | 3,2 | 6,5 | 9,1 | 14,6 | 11,9 | 9,2 | 8,8 | 12,0 | 12,5 | 5,7 |
Решение. Подготовим данные для вставки из MS Excel (как транспонировать таблицу для сервиса см. Задание №2) .
Включаем в отчет: Проверка общего качества уравнения множественной регрессии (F-статистика. Критерий Фишера, Проверка на наличие автокорреляции),
После нажатия на кнопку Дале получаем готовое решение.
Уравнение регрессии (оценка уравнения регрессии):
Y = 0.2706 + 0.5257X1 + 1.4798X2
Скачать.
Качество построенного уравнения регрессии проверяется с помощью критерия Фишера (п. 6 отчета).
Пример №3 .
В таблице представлены данные о ВВП, объемах потребления и инвестициях некоторых стран.
ВВП | 16331,97 | 16763,35 | 17492,22 | 18473,83 | 19187,64 | 20066,25 | 21281,78 | 22326,86 | 23125,90 |
Потребление в текущих ценах | 771,92 | 814,28 | 735,60 | 788,54 | 853,62 | 900,39 | 999,55 | 1076,37 | 1117,51 |
Инвестиции в текущих ценах | 176,64 | 173,15 | 151,96 | 171,62 | 192,26 | 198,71 | 227,17 | 259,07 | 259,85 |
Решение:
Для проверки полученных расчетов используем инструменты Microsoft Excel «Анализ данных» (см. пример).
Пример №4 . На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:
- Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.
- Рассчитать частные коэффициенты эластичности. Сделать вывод.
- Определить стандартизованные коэффициенты регрессии (b-коэффициенты). Сделать вывод.
- Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
- Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.
Решение. Определим вектор оценок коэффициентов регрессии. Согласно методу наименьших квадратов, вектор получается из выражения:
s = (X T X) -1 X T Y
Матрица X
1 | 3.9 | 10 |
1 | 3.9 | 14 |
1 | 3.7 | 15 |
1 | 4 | 16 |
1 | 3.8 | 17 |
1 | 4.8 | 19 |
1 | 5.4 | 19 |
1 | 4.4 | 20 |
1 | 5.3 | 20 |
1 | 6.8 | 20 |
1 | 6 | 21 |
1 | 6.4 | 22 |
1 | 6.8 | 22 |
1 | 7.2 | 25 |
1 | 8 | 28 |
1 | 8.2 | 29 |
1 | 8.1 | 30 |
1 | 8.5 | 31 |
1 | 9.6 | 32 |
1 | 9 | 36 |
Матрица Y
7 |
7 |
7 |
7 |
7 |
7 |
8 |
8 |
8 |
10 |
9 |
11 |
9 |
11 |
12 |
12 |
12 |
12 |
14 |
14 |
Матрица X T
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3.9 | 3.9 | 3.7 | 4 | 3.8 | 4.8 | 5.4 | 4.4 | 5.3 | 6.8 | 6 | 6.4 | 6.8 | 7.2 | 8 | 8.2 | 8.1 | 8.5 | 9.6 | 9 |
10 | 14 | 15 | 16 | 17 | 19 | 19 | 20 | 20 | 20 | 21 | 22 | 22 | 25 | 28 | 29 | 30 | 31 | 32 | 36 |
Умножаем матрицы, (X T X)
Умножаем матрицы, (X T Y)
Находим определитель det(X T X) T = 139940.08
Находим обратную матрицу (X T X) -1
Уравнение регрессии
Y = 1.8353 + 0.9459X 1 + 0.0856X 2
Для несмещенной оценки дисперсии проделаем следующие вычисления:
Несмещенная ошибка e = Y — X*s
0.62 |
0.28 |
0.38 |
0.01 |
0.11 |
-1 |
-0.57 |
0.29 |
-0.56 |
0.02 |
-0.31 |
1.23 |
-1.15 |
0.21 |
0.2 |
-0.07 |
-0.07 |
-0.53 |
0.34 |
0.57 |
se 2 = (Y — X*s) T (Y — X*s)
Несмещенная оценка дисперсии равна
Оценка среднеквадратичного отклонения равна
Найдем оценку ковариационной матрицы вектора k = σ*(X T X) -1
k(x) = 0.36 |
| = |
|
Дисперсии параметров модели определяются соотношением S 2 i = Kii, т.е. это элементы, лежащие на главной диагонали
С целью расширения возможностей содержательного анализа модели регрессии используются частные коэффициенты эластичности, которые определяются по формуле
Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции (от 0 до 1)
Связь между признаком Y факторами X сильная
Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора хi при неизменном уровне других факторов определяются по стандартной формуле линейного коэффициента корреляции — последовательно берутся пары yx1,yx2. , x1x2, x1x3.. и так далее и для каждой пары находится коэффициент корреляции
Коэффициент детерминации
R 2 = 0.97 2 = 0.95, т.е. в 95% случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая
Значимость коэффициента корреляции
По таблице Стьюдента находим Tтабл: Tтабл (n-m-1;a) = (17;0.05) = 1.74
Поскольку Tнабл Fkp, то коэффициент детерминации статистически значим и уравнение регрессии статистически надежно
Видео:Множественная регрессияСкачать
Построение парной регрессионной модели
Рекомендации к решению контрольной работы.
Статистические данные по экономике можно получить на странице Россия в цифрах.
После определения зависимой и объясняющих переменных можно воспользоваться сервисом Множественная регрессия. Регрессионную модель с 2-мя объясняющими переменными можно построить используя матричный метод нахождения параметров уравнения регрессии или метод Крамера для нахождения параметров уравнения регрессии.
Пример №3 . Исследуется зависимость размера дивидендов y акций группы компаний от доходности акций x1, дохода компании x2 и объема инвестиций в расширение и модернизацию производства x3. Исходные данные представлены выборкой объема n=50.
Тема I. Парная линейная регрессия
Постройте парные линейные регрессии — зависимости признака y от факторов x1, x2, x3 взятых по отдельности. Для каждой объясняющей переменной:
- Постройте диаграмму рассеяния (поле корреляции). При построении выберите тип диаграммы «Точечная» (без отрезков, соединяющих точки).
- Вычислите коэффициенты уравнения выборочной парной линейной регрессии (для вычисления коэффициентов регрессии воспользуйтесь встроенной функцией ЛИНЕЙН (функция находится в категории «Статистические») или надстройкой Пакет Анализа), коэффициент детерминации, коэффициент корреляции (функция КОРЕЛЛ), среднюю ошибку аппроксимации.
- Запишите полученное уравнение выборочной регрессии. Дайте интерпретацию найденным в предыдущем пункте значениям.
- Постройте на поле корреляции прямую линию выборочной регрессии по точкам .
- Постройте диаграмму остатков.
- Проверьте статистическую значимость коэффициентов регрессии по критерию Стьюдента (табличное значение определите с помощью функции СТЬЮДРАСПОБР) и всего уравнения в целом по критерию Фишера (табличное значение Fтабл определите с помощью функции FРАСПОБР).
- Постройте доверительные интервалы для коэффициентов регрессии. Дайте им интерпретацию.
- Постройте прогноз для значения фактора, на 50% превышающего его среднее значение.
- Постройте доверительный интервал прогноза. Дайте ему экономическую интерпретацию.
- Оцените полученные результаты — сделайте выводы о качестве построенной модели, влиянии рассматриваемого фактора на показатель.
Тема II. Множественная линейная регрессия
1. Постройте выборочную множественную линейную регрессию показателя на все указанные факторы. Запишите полученное уравнение, дайте ему экономическую интерпретацию.
2. Определите коэффициент детерминации, дайте ему интерпретацию. Вычислите среднюю абсолютную ошибку аппроксимации и дайте ей интерпретацию.
3. Проверьте статистическую значимость каждого из коэффициентов и всего уравнения в целом.
4. Постройте диаграмму остатков.
5. Постройте доверительные интервалы коэффициентов. Для статистически значимых коэффициентов дайте интерпретации доверительных интервалов.
6. Постройте точечный прогноз значения показателя y при значениях факторов, на 50% превышающих их средние значения.
7. Постройте доверительный интервал прогноза, дайте ему экономическую интерпретацию.
8. Постройте матрицу коэффициентов выборочной корреляции между показателем и факторами. Сделайте вывод о наличии проблемы мультиколлинеарности.
9. Оцените полученные результаты — сделайте выводы о качестве построенной модели, влиянии рассматриваемых факторов на показатель.
Видео:Множественная регрессия в Excel и мультиколлинеарностьСкачать
Проблема выбора факторов для множественной регрессии
Тема № 3. Множественная корреляция и регрессия.
Проблема выбора факторов для множественной регрессии
2. Способы линеаризации связей фактора с результативным признаком
3. Уравнение многофакторной регрессии, его построение и интерпретация
Стандартизированные коэффициенты регрессии и коэффициенты эластичности и их интерпретация
Система показателей тесноты многофакторной связи
Методы оценки степени надежности многофакторной регрессии
Корреляционно-регрессивные модели и их применение в анализе и прогнозе социально-экономических явлений.
Измерение связи неколичественных признаков. Фиктивные переменные
Предпосылки метода наименьших квадратов при нахождении параметров уравнения множественной регрессии
Проблема выбора факторов для множественной регрессии
В реальной жизни, социальных и экономических системах на результативный признак всегда влияет множество факторных признаков. Кроме того, ввиду математических свойств МНК в уравнение регрессии нельзя включать число факторов ≥ (n — 1), где n число наблюдений. А для надлежащих оценок параметров число фактов должно быть в 5 – 6 раз меньше числа наблюдений. Т.к. между самими факторами существует связь, то парная корреляция и регрессия измеряют не чистое влияние каждого фактора, но и часть влияния других факторов, не включенных в модель, но связанных с данными.
Парная регрессия может дать хороший результат, если влиянием других факторов, не включенных в модель, можно пренебречь. Однако исследователь никогда не может быть уверен в справедливости данного предположения. Поэтому, как правило, в эконометрических исследованиях для более полной и точной оценки применяется модель множественной регрессии
Множественная регрессия используется для решения проблем спроса, доходности акций при изучении функций издержек. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также их совокупное влияние на моделируемый показатель. Построение модели начинают с решения вопроса о спецификации модели. Во множественной регрессии спецификация модели включает в себя решение двух вопросов:
1. отбор факторов
2. выбор вида уравнения.
Включение в уравнение множественной регрессии того или иного набора факторов связано, прежде всего, с представлением исследователя о природе взаимосвязи моделируемого показателя с другими жизненными явлениями.
Факторы включенные в модель должны отвечать следующим требованиям:
1. должны быть количественно измеримы; если необходимо включать качественный фактор, то ему необходимо придать количественное определение.
2. не должны быть интеркоррелированны (т.е. факторные признаки не должны находится в тесной зависимости между собой) и находится в точной функциональной связи. При включении в модель факторов с высокой интеркорреляцией ( ) для множественной регрессии может привести к нежелательным последствиям, т.е. система норм уравнений может оказаться плохо обусловленной и повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии. Если существует высокая корреляция между факторами, то нельзя установить их изолированное влияние на результативный показатель, и параметры уравнения регрессии окажутся не интерпретируемыми.
Факторы множественной регрессии должны объяснять вариацию зависимой переменной. Если строится модель с набором факторов P, то для нее рассчитывается показатель множественной детерминации R 2 , который фиксирует долю объяснений вариации результативного признака за счет рассмотрения в регрессии P — факторов. Влияние неучтенных факторов оценивается как 1 – R 2 с соответствующей остаточной дисперсией.
При дополнительном включении в регрессию (P+1) – го фактора R 2 должен возрастать, Docm уменьшаться. Если этого не происходит и данные показатели мало отличаются друг от друга, то включенный в анализ (P+1) – фактор не улучшает модель и является практически лишним фактором.
Пример. Допустим, для множественной регрессии, включающей 5 факторов, R 2 = 0,85, а при включении 6-го фактора ® R 2 = 0,786. Значит включение 6-го фактора нецелесообразно.
Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии, но и приводит к статической незначимости параметров регрессии по t – критерию Стьюдента. Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, но практически – в этом нет необходимости.
Отбор факторов производится на основе качественного теоретико-жизненного анализа и проходит в 2 стадии:
1. подбираются факторы, исходя из сущности проблемы,
2. на основе матрицы показателей корреляции определяют t–статистики для параметров регрессии. Коэффициенты интеркорреляции (т.е. корреляции между факторными признаками) позволяют исключить из модели факторы, дублирующие друг друга.
Считается, что 2 переменные являются коллинеарными, т.е. находятся между собой в линейной зависимости, если коэффициент
Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов (в идеале коэффициент ), то коллинеарность факторов нарушает это условие.
Если факторы явно коллинеарны, то они дублируют друг друга и один из них необходимо исключить из модели.
Правило: предпочтение отдается не фактору, который более тесно связан с результатом, а тому фактору, который при достаточной связи с результатом имеет номинальную тесноту связи с другими факторами.
Пример. Изучается зависимость между
Построим матрицу парных коэффициентов корреляции
y | x | z | V |
y | |||
x | 0,9 | ||
z | 0,8 | 0,9 | |
v | 0,7 | 0,6 | 0,3 |
Факторы X и Z явно коллинеарны, т.е. дублируют друг друга
В модели оставляем фактор Z, т.к. несмотря на то, что коэффициенты парной корреляции
, но зато связь Z с другим фактором слабее:
По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем 2 фактора связаны между собой линейной зависимостью, т.е. наблюдается совокупность воздействия факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой и нельзя оценивать влияние каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка параметров с помощью МНК.
Включение в модель мультиколлинеарных факторов нежелательно в силу следующих последствий:
1. затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов «в чистом» виде, т.к. факторы интерколлинеарны. Параметры линейной регрессии теряют жизненный смысл.
2. оценки параметров ненадежны, обнаруживаются большие стандартные ошибки и меняют с изменением объема наблюдений не только по величине, но и по знаку, что делает модель непригодной для анализа и прогноза.
2. Способы линеаризации связей фактора с результативным признаком
Для оценки параметров нелинейных уравнений используют 2 подхода:
1. основан на линеаризации модели и заключается в том, что с помощью подходящих преобразований исходных переменный исследуемую зависимость представляют в виде линейного соотношения между преобразованными переменными.
2. обычно применяют в случае, когда подобрать соответствующее линеаризационное преобразование невозможно. В этом случае применяют методы нелинейной оптимизации на основе исходных переменных.
По аналогии с парной корреляцией.
3. Уравнение многофакторной регрессии, его построение и интерпретация
Как и в парной зависимости возможны различные виды множественной регрессии: линейные и нелинейные. В виду четной интерпретации параметров наиболее широко используются линейная и степенные функции.
В уравнении множественной регрессии:
Коэффициенты при х называются коэффициентами «чистой» регрессии. Они показывают среднее изменение результата с изменением соответствующего фактора на единицу при неизменном значении других факторов, закрепленных на среднем уровне.
Параметр а не подлежит экономической интерпретации.
Параметры уравнения множественной регрессии оцениваются как в парной регрессии МНК, при котором строится система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии.
Т. о. для уравнения
Система нормальных уравнений будет иметь следующий вид:
Ее решение может быть осуществлено методом определителей
Где Δа, Δb – частные определители системы, при этом
Δа, Δb, … , Δbр получаются путем замены соответствующего столбца матрицы общего определителя данной системы данными левой части системы.
у – отношение прибыли ко всем активам банка, %
х1 – Доля ГКО в активах, %
х2 – отношение непроцентных доходов к процентным доходам деятельности банка, %
х3 – коэффициент полной ликвидности банка
Построить множественную модель
Таблица 1. Исходные данные и расчетные величины для анализа.
№ банк | у,% | х1,% | х2,% | х3,% | |||
13,5 | 24,0 | 2,5 | 1,27 | 8,1 | 5,4 | 29,16 | |
25,5 | 51,0 | 4,5 | 1,97 | 20,1 | 5,4 | 29,16 | |
1,2 | 10,4 | 2,5 | 2,15 | 7,8 | -6,6 | 43,56 | |
1,3 | 14,1 | 1,6 | 1,27 | 4,8 | -3,5 | 12,25 | |
4,5 | 4,7 | 0,3 | 1,34 | 1,9 | 2,6 | 6,76 | |
2,7 | 15,8 | 0,5 | 0,97 | 3,8 | -1,1 | 1,21 | |
12,2 | 29,2 | 0,5 | 1,15 | 9,4 | 2,8 | 7,84 | |
4,2 | 31,0 | 6,6 | 1,07 | 10,1 | -5,9 | 34,81 | |
4,4 | 13,5 | 1,0 | 1,08 | 3,7 | 0,7 | 0,49 | |
2,8 | 2,2 | 0,6 | 1,36 | 1,3 | 0,8 | 0,64 | |
7,5 | 50,3 | 2,1 | 1,11 | 15,7 | -8,2 | 67,24 | |
14,4 | 28,3 | 7,2 | 1,18 | 9,7 | 4,7 | 22,09 | |
11,4 | 30,4 | 1,2 | 1,10 | 9,2 | 2,2 | 4,84 | |
S | 10,49 | 304,9 | 31,1 | 1,7,02 | 105,6 | х | 260,05 |
ср | 8,1 | 23,5 | 2,39 | 1,31 |
1. Рассчитать по всем показателям среднее значение ( и V. Результат занесем в таблицу 2.
Таблица 2. Характеристики ряда распределения
Факторы | Среднее значение | Среднее квадратное отклонение | Коэффициент вариации |
х1 | 23,5 | 14,83 | 0,632 |
х2 | 2,39 | 2,22 | 0,929 |
х3 | 1,31 | 0,34 | 0,261 |
у | 8,1 | 6,80 | 0,843 |
Получим, что х1, х2, и у совокупность неоднородно, следовательно, должны исключить аномальные наблюдения
Не исключаем, т.к. важна методика .
2. Рассчитаем уравнение парной регрессии между результатом и каждым из факторных признаков.
Установим коэффициенты парной корреляции и детерминации (они характеризуют изолированное влияние каждого фактора на результат, т.к. другие факторы применяются на неизменном уровне).
Парные уравнения регрессии
Уравнение регрессии позволяет сделать вывод, что с увеличением доли ГКО в активах на 1% пункт, доля прибыли по всем активам увеличивается в среднем на 0,329 % пунктов.
ryx1 = 0,718 – связь прямая и достаточно сильная
r 2 yx1 = 0,516 – при условии др. не считается
2)
с увеличением отношения непроцентных доходов к процентным доходам на 1% пунктов, доля прибыли по всем активам увеличивается в среднем на 1,215%
3)
ryx3 = 0,241 – связь непрямая и слабая
С увеличением коэффициента полной ликвидности банка на 1 % доля прибыли по всем активам увеличивается в среднем на 4,788%
Вариация х3 объясняет вариацию у на 5,8 %
3. Построим матрицу парных коэффициентов вариации для выявления явно коллинеарных факторов.
Таблица 3. Матрица парных коэффициентов корреляции.
Признаки | у | х1 | х2 | х3 |
у | ||||
х1 | 0,718 | |||
х2 | 0,516 | 0,462 | ||
х3 | 0,241 | 0,0053 | 0,134 |
Явно коллинеарных факторов нет, т.к. коэффициенты парной корреляции между факторными признаками не превышают 0,7.
Способы определения коэффициентов условно чистой регрессии.
Для определения данных коэффициентов рассчитаем определители
i – номер наблюдения,
j – номер фактора.
Результаты занесем в вспомогательную таблицу.
Таблица 4. Расчет многофакторной регрессии.
№ банк | Dх1 | Dх2 | Dх3 | Dу | D 2 х1 | D 2 х2 | D 2 х3 | D 2 у | DуDх1 | DуDх2 | DуDх3 | Dх1Dх2 | Dх1Dх3 | Dх2Dх3 |
0,5 | -0,04 | |||||||||||||
27,5 | 0,66 | |||||||||||||
-13,1 | 0,84 | |||||||||||||
-9,4 | -0,04 | |||||||||||||
-18,1 | 0,03 | |||||||||||||
-7,7 | -0,34 | |||||||||||||
5,7 | -0,16 | |||||||||||||
7,5 | -0,24 | |||||||||||||
-10,0 | -0,23 | |||||||||||||
-21,3 | 0,05 | |||||||||||||
-26,9 | -0,20 | |||||||||||||
4,8 | -0,13 | |||||||||||||
6,9 | -0,23 | |||||||||||||
å | — | 64,11 | 1,52 | 77,92 | 7,277 | 197,82 | 0,55 | 1,320 |
Для определения коэффициентов условно чистой регрессии рассчитаем систему нормальных уравнений
Из вспомогательной таблицы № 4 подставляем необходимые данные
Уравнение многофакторной регрессии примет вид
Подставляя в данное уравнение значение факторов х1, х2, х3 получим теоретическое значение результативного признака.
Т.о. в отличии от коэффициентов парной регрессии, коэффициенты условно чистой регрессии измеряют влияние фактора, абстрагируясь от связей вариации этого фактора с вариациями другого фактора, включенных в модель.
Коэффициенты условно чистой регрессии, т.е. bj являются именованными числами, выраженными в различных единицах измерения, в тех же единицах, что и соответствующие им факторы. Поэтому они не сравнимы друг с другом, т.е. по их величине нельзя сделать вывод, какой из факторов в наибольшей степени влияет на результат. Для приведения их в сравнимый вид применяется то же преобразование, что и для получения парных коэффициентов. Полученную величину называют стандартизированным коэффициентом регрессии.
💥 Видео
Выбор факторов, влияющих на результативный показательСкачать
Эконометрика. Линейная парная регрессияСкачать
Эконометрика. Множественная регрессия и корреляция.Скачать
Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать
Регрессия урок 1: отбор факторов для моделиСкачать
09 02 Основы множественной регрессииСкачать
Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать
РЕГРЕССИОННЫЙ АНАЛИЗ STATISTICA #12Скачать
Множественная регрессия в MS Excel. Быстрое решение. И подробное решение. Калькулятор!Скачать
Множественная регрессия в программе Statistica (Multiple regression)Скачать
Множественная степенная регрессияСкачать
Коэффициент линейной регрессии, 2 способаСкачать
Эконометрика Линейная регрессия и корреляцияСкачать
Математика #1 | Корреляция и регрессияСкачать
Эконометрика. Построение модели множественной регрессии в Excel. Часть 1.Скачать
Парная регрессия: линейная зависимостьСкачать
Множественная линейная регрессия, часть 1Скачать