Основные понятия равносильности уравнений на множествах

Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Равносильность уравнений на множествах. Основные понятия.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Равносильность уравнений на множествах. Основные понятия.

Тип уроков: комбинированные уроки изучения нового материала, обобщения и систематизации знаний.

· обобщить и систематизировать знания учащихся по наиболее важным вопросам, связанным с преобразованиями и решением уравнений с одной переменной.

· развитие мышления учащихся; развитие познавательного интереса и умений учебно-познавательной деятельности.

· воспитание организованности, самоконтроля и взаимоконтроля.

Организационные формы общения: индивидуальная, групповая.

2.Актуализация опорных знаний

  1. Все корни исходного уравнения являются корнями его уравнения-следствия.
  2. Возведение в четную степень может привести к появлению корней, посторонних для исходного уравнения.
  3. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах
  4. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах
  5. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  6. Следствием уравнения Основные понятия равносильности уравнений на множествах1 является уравнение Основные понятия равносильности уравнений на множествах.
  7. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах=0.
  8. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  9. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  10. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  11. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  12. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  13. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  14. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  15. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  16. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  17. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.
  18. Следствием уравнения Основные понятия равносильности уравнений на множествахявляется уравнение Основные понятия равносильности уравнений на множествах.

3. Изучение новой темы

Объяснить п.10.1 стр 266-267

Решить в классе №10.2(а,в,д,ж), 10.3 (а,в,д,ж,и,л,н,п)

5. Подведение итогов

Домашнее задание №10.2 (б,г,е,з), 10.3 (б,г,е,з,к,м,о)

1. Найдите корень уравнения: Основные понятия равносильности уравнений на множествах

2. Найдите корень уравнения: Основные понятия равносильности уравнений на множествах

3. Решите уравнение Основные понятия равносильности уравнений на множествах

Найдите корень уравнения Основные понятия равносильности уравнений на множествах

5. Найдите корень уравнения: Основные понятия равносильности уравнений на множествахВ ответе запишите наибольший отрицательный корень.

6. Найдите корень уравнения Основные понятия равносильности уравнений на множествах

7. Найдите корень уравнения Основные понятия равносильности уравнений на множествах

Найдите корень уравнения Основные понятия равносильности уравнений на множествах

9. Найдите корень уравнения Основные понятия равносильности уравнений на множествах

Найдите решение уравнения: Основные понятия равносильности уравнений на множествах

Видео:Множество. Элементы множества. 5 класс.Скачать

Множество. Элементы множества. 5 класс.

Равносильность уравнений на множествах

Основные понятия равносильности уравнений на множествах

Данная презентация подготовлена для проведения урока алгебры и начала математического анализа в 11 классе по учебнику Никольского

Просмотр содержимого документа
«Равносильность уравнений на множествах»

Основные понятия равносильности уравнений на множествах

Равносильность уравнений на множествах

Урок алгебры 11 класс

Учитель математики МБОУ

« Школа № 3г. Феодосии Республики Крым».

Основные понятия равносильности уравнений на множествах

Равносильность уравнений на множествах

Цель: ввести понятия равносильных уравнений на множествах; перечислить основные преобразования, приводящие к уравнениям, равносильным на множествах; научиться решать уравнения путем замены его равносильным уравнением на множестве.

Основные понятия равносильности уравнений на множествах

  • Пусть даны два уравнения f(x)=g(x) и p(x)=h(x) и пусть дано некоторое множество чисел М
  • Если любой корень первого уравнения, принадлежащий множеству М, является корнем второго уравнения, а любой корень второго уравнения, принадлежащий множеству М, является корнем первого уравнения, то такие уравнения называют равносильными на множестве М.
  • Если каждое из этих уравнений не имеет корней на множестве М , то такие уравнения называются равносильными на множестве М

Основные понятия равносильности уравнений на множествах

  • Замену одного уравнения другим уравнением, равносильным ему на множестве М , называют равносильным переходом на множестве М от одного уравнения к другому.
  • Если два уравнения равносильны на множестве всех действительных чисел, то в таких случаях говорят, что уравнения равносильны, опуская слова на множестве действительных чисел.

Основные понятия равносильности уравнений на множествах

Основные преобразования уравнений, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел

  • Возведение уравнения f(x)=g(x) в четную степень, приводит к уравнению, равносильному исходному на том множестве М, на котором обе функции неотрицательны.
  • Умножение ( деление) обеих частей уравнения на функцию ψ, приводит к уравнению, равносильному исходному на том множестве М, на котором функция ψ определена и отлична от нуля.

Основные понятия равносильности уравнений на множествах0, a ≠1 приводит к уравнению f(x)=g(x), равносильному исходному на том множестве М, на котором положительны обе функции f и g . Приведение подобных членов ( h(x)-h(x)=0) приводит к уравнению, равносильному исходному на том множестве М, на котором определена функция h(x) , т,е. на области существования функции h(x). » width=»640″

Основные преобразования уравнений, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел

  • Потенцирование логарифмического уравнения

приводит к уравнению f(x)=g(x), равносильному исходному на том множестве М, на котором положительны обе функции f и g .

  • Приведение подобных членов ( h(x)-h(x)=0) приводит к уравнению, равносильному исходному на том множестве М, на котором определена функция h(x) , т,е. на области существования функции h(x).

Основные понятия равносильности уравнений на множествах

Основные преобразования уравнений, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел

  • Применение некоторых формул

( логарифмических, тригонометрических и др.) приводит к уравнению, равносильному исходному на множестве М, на котором определены обе части применяемых формул.

Основные понятия равносильности уравнений на множествах

Работаем в классе:

  • № 10.5 (а,в)
  • № 10.6 ( а, в)
  • № 10.7 ( а, в)
  • № 10.8 ( а,в)
  • № 10.11( а,в)

Основные понятия равносильности уравнений на множествах

Видео:9 класс, 2 урок, Множества и операции над нимиСкачать

9 класс, 2 урок, Множества и операции над ними

«Равносильность уравнений» в 11 классе
план-конспект урока по алгебре (11 класс) по теме

Основные понятия равносильности уравнений на множествах

Урок по алгебре и началам анализа в 11 классе по теме » Равносильность уравнений»..

Видео:8 класс, 24 урок, Основные понятия, связанные с квадратными уравнениямиСкачать

8 класс, 24 урок, Основные понятия, связанные с квадратными уравнениями

Скачать:

ВложениеРазмер
План-конспект урока по алгебре и началам анализа в 11 классе по теме: «Равносильность уравнений»628 КБ

Видео:МНОЖЕСТВО И ЕГО ЭЛЕМЕНТЫ // ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯСкачать

МНОЖЕСТВО И ЕГО ЭЛЕМЕНТЫ // ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Предварительный просмотр:

Урок по алгебре и началам анализа в 11 классе

Тема: «Равносильность уравнений»

Тип уроков: комбинированные уроки изучения нового материала, обобщения и систематизации знаний.

  • обобщить и систематизировать знания учащихся по наиболее важным вопросам, связанным с преобразованиями и решением уравнений с одной переменной.
  • развитие мышления учащихся; развитие познавательного интереса и умений учебно-познавательной деятельности.
  • воспитание организованности, самоконтроля и взаимоконтроля.

Организационные формы общения: индивидуальная, групповая.

Оборудование: модуль «Решение иррациональных уравнений».

I Организационный этап — 2 мин.

II Актуализация опорных знаний — 4 мин.

III Цели урока — 2 мин.

IV Изучение теоретического материала и способов деятельности — 20 мин.

V Закрепление учебного материала — 12 мин.

V Закрепление учебного материала — 25 мин.

VI Самостоятельная работа — 10 мин.

VII Домашнее задание — 3 мин.

VIII Выводы по уроку — 2 мин.

I Организационный этап

II Актуализация опорных знаний

Краткое обсуждение с учащимися тех теоретических знаний, которыми они обладают и пользуются при решении уравнений.

Допустим, нам необходимо решить уравнение

Преобразуем данное уравнение, выстраивая цепочку уравнений и стараясь получить уравнение вида а х = b , т.е. линейное уравнение

6х — 15 = 2х + 5, 6х — 2х = 5 + 15, 4х = 20.

Откуда получаем, что 5 — корень уравнения. Причём, как последнего уравнения, так и любого из уравнений данной цепочки, так как они являются равносильными уравнениями. По сути, решением уравнения и является выстраивание подобных цепочек уравнений.

Однако при преобразовании уравнений (и неравенств в том числе) далеко не всегда легко получить им равносильные уравнения. И как быть тогда?

Изучением этих крайне важных вопросов нам и предстоит заняться.

Мы вернёмся к целому ряду понятий, связанных с решением уравнений, с которыми вы неплохо знакомы, и посмотрим на них как бы несколько иначе, глубже, обобщим и дополним рядом важных и принципиальных положений.

IV Изучение теоретического материала и способов деятельности

1) Определение. Два уравнения с одной переменной f(х) = g(х) и h(х) = р(х) называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Например, уравнения — 4 = 0 и ( х + 2)(2 Х — 4 ) = 0 равносильны; равносильны и уравнения х 2 + 1 = 0 и = — 2 — они не имеют корней.

2) Определение . Если каждый корень уравнения f(х) = g(х) (1)

является в то же время корнем уравнения h(х) = р(х) (2),

то уравнение (2) называется следствием уравнения (1).

Например, уравнение х — 2 = 3 имеет корень 5 , уравнение Основные понятия равносильности уравнений на множествах— 25 = 0 имеет корни ± 5 . Так как корень уравнения х — 2 = 3 является корнем уравнения х 2 — 25 = 0 , то уравнение х 2 — 25 = 0 является следствием,, уравнения х — 2 = 3.

Следовательно, два уравнения называют равносильными тогда и только тогда, когда каждое из них является следствием другого.

3) Если в ходе преобразований, при переходе от одного из уравнений к уравнению-следствию, мы неуверенны в равносильности выполняемого перехода, то у последнего уравнения могут появиться посторонние корни в отношении исходного уравнения. Поэтому все полученные корни уравнения- следствия необходимо проверить, подставляя их в исходное уравнение. Тем самым, проверка найденных корней уравнения является не проверкой верности выполненных технических преобразований, а неотъемлемой частью, этапом решения уравнения.

4) Итак, мы выяснили, что в процессе решения уравнений (а ещё более при решении неравенств) на каждом этапе преобразований крайне важно знать, равносильный ли переход мы совершаем. Сформулируем и обсудим ряд важных для нас положений.

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному уравнению.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечётную степень, то получится уравнение, равносильное данному уравнению.

Теорема 3 . Показательное уравнение (где > 1, 1 ) равносильно уравнению f(х) = g(х).

Определение . Областью определения уравнения f(х) = g(х) или ОДЗ переменной уравнения называется множество тех значений х , при которых одновременно имеют смысл обе части уравнения f(х) = g(х).

Теорема 4 . Если обе части уравнения f(х) = g(х) умножить на одно и то же выражение h(х), которое имеет смысл всюду в области определения (ОДЗ) уравнения f(х) = g(х) и при этом нигде в этой области h(х) 0 , то уравнения f(х) = g(х) и h(х)∙ f(х) = h(х) g(х) равносильны.

То есть, мы можем обе части уравнения умножать или делить на одно и то же отличное от нуля число, не нарушая при этом равносильности уравнений.

Теорема 5. Если обе части уравнения f(х) = g(х) неотрицательны на ОДЗ уравнения, то после возведения обеих его частей в одну и ту же степень n получится уравнение Основные понятия равносильности уравнений на множествахg n (x), равносильное исходному уравнению.

Теорема 6. Если f(х)>0, = g(х)>0 , то уравнение log α 2 f(x) = log α g(x) , где а>0, , равносильно уравнению f(х) = g(х).

5) Рассмотрим применение теоретических положений на практике. Пусть нам дано уравнение х — 1 = 3 , корень которого равен 4 .

а) Умножив обе части уравнения на выражение х — 2 , получим уравнение (х — 1 )(х — 2) = 3(х — 2). Решим полученное уравнение

х 2 — Зх + 2 = Зх — 6, х 2 — 6х + 8 = 0, x 1 = 2, х 2 = 4.

То есть, уравнение-следствие имеет два корня 2 и 4 , причём, 2 -посторонний корень для исходного уравнения. Каким образом у исходного уравнения появился посторонний корень? — Если бы мы вначале преобразовали исходное уравнение к виду х — 4 = 0 . За тем домножили обе части уравнения на х — 2 . То получили бы уравнение (х — 4)(х — 2) = 0 , которое равносильно совокупности уравнении . Тогда понятно, что уравнение х — 2 = 0 , по отношению к исходному уравнению х — 4 = 0 , является посторонним уравнением, отсюда и появление постороннего корня. Фактически мы умножили обе части исходного уравнения на выражение х — 2 , допуская при этом его равенство нулю, что невозможно по теореме 4 .

б) Возведём в квадрат обе части уравнения х — 1 = 3 . Получим уравнение-следствие (х-1) 2 = 9 . Откуда х 2 — 2х — 8 = 0, х 1 = — 2, х 2 = 4 . Вновь у уравнения-следствия появляется посторонний корень по отношению к исходному уравнению. Преобразовав уравнение (х-1) 2 = 9 к виду (х-4)(х+ 2)=0 , получаем постороннее уравнение х + 2 = 0 и посторонний корень -2 . Нарушено условие теоремы 5: возводя в квадрат, мы «забыли», что при возведении в квадрат должно выполняться условие х — 1 >0 .

в) Рассмотрим уравнение ln (2х — 4) = 1n(3х — 5). Потенцируя, получим уравнение 2х — 4 = Зх — 5. Откуда х = 1 . Проверкой убеждаемся, что 1 является посторонним корнем для исходного уравнения. В данном случае произошло не появление постороннего уравнения, а расширение ОДЗ исходного уравнения. У исходного уравнения ОДЗ: (2; + ), у полученного уравнения ОДЗ — вся числовая прямая. Тем самым не нарушены требования теоремы 6.

6) Выводы. Исходное уравнение преобразуется в процессе решения в уравнение-следствие, значит, необходимо обязательное выполнение проверки всех найденных корней, если: расширилась ОДЗ уравнения; возводились в одну и ту же чётную степень обе части уравнения; выполнялось умножение обеих частей уравнения на одно и тоже выражение с переменной.

V Закрепление учебного материала

1) № 1663; № 1665(а, в); № 1666 (а, б).

2) Переходя к решению уравнений, мы будем стараться учесть следующие два момента. С одной стороны наши решения уравнений должны содержать необходимое теоретическое обоснование нашей деятельности. С другой стороны мы будем учитывать, что в дальнейшем, при решении неравенств, в большинстве случаев от нас потребуется обеспечение равносильности переходов в преобразованиях, и поэтому уже на данном этапе — при решении уравнений, мы будем отрабатывать именно эти навыки, дабы обеспечить преемственность способов деятельности.

Пусть на дано уравнение g(x) Возведя в квадрат обе части уравнения, получим уравнение f(х) = g 2 (х) которое можно записать так:

( -g(x)) ( Основные понятия равносильности уравнений на множествах+g(x))=0

Откуда получаем совокупность уравнений: .

Имеем постороннее уравнение, и могут появиться посторонние корни. Следовательно, необходима проверка корней. Если мы захотим выполнить равносильный переход и обойтись без проверки, то исходное уравнение

равносильно смешанной системе:

3) Решим уравнения (двумя способами):

а) Первый способ. Решение. ОДЗ уравнения: х > — 11 . После возведения обеих частей уравнения в квадрат, получим уравнение-следствие х 2 -Зх-10 = 0 с корнями — 2 и 5 . Оба корня принадлежат ОДЗ уравнения, но это не меняет сути дела и мы вынуждены выполнить проверку корней.

Проверка. Подставив x 1 = — 2 , получим — неверное равенство, — 2 — посторонний корень.

Подставив х 2 = 5 , получим или 4 = 4 — верное равенство, 5 корень исходного уравнения.

а) Второй способ . Решение. Исходное уравнение равносильно системе

или решение системы и исходного

уравнения х 2 = 5.

б) Первый способ . Решение. ОДЗ уравнения: . Возведя обе части

уравнения в квадрат и приведя подобные слагаемые, получим уравнение х 2 — х = 0 . Откуда x 1 = 0, х 2 = 1 . Опять оба корня принадлежат ОДЗ уравнения, но будут ли они корнями исходного уравнения ничего сказать нельзя.

Проверка . Подставив x 1 = 0 , получим — верное равенство, 0 — корень исходного уравнения.

Подставив х 2 = 1 , получим Основные понятия равносильности уравнений на множествах Основные понятия равносильности уравнений на множествах— верное равенство, 1 — корень исходного уравнения.

б) Второй способ. Решение. Исходное уравнение равносильно системе

или . Откуда решение системы и исходного уравнения 0 и 1 .

в) Первый способ. Решение. ОДЗ уравнения: -1 . Возведя обе части уравнения в квадрат и приведя подобные слагаемые, получим уравнение . Откуда x 1 = 0, х 2 = . Оба корня принадлежат ОДЗ

уравнения. Выполним проверку.

Проверка . Подставив x 1 = 0 , получим — неверное равенство, 0 -посторонний корень.

Подставив х 2 = , получим — неверное равенство, -посторонний корень.

Оба корня принадлежат ОДЗ переменной уравнения, но при этом являются посторонними корнями. Ответ: корней нет.

в) Второй способ . Решение. Исходное уравнение равносильно системе или . Система решений не имеет, значит, и уравнение тоже решений не имеет.

Ответ: корней нет.

г) Первый способ . Решение. ОДЗ уравнения задаётся решением системы , или которая решений не имеет. Значит, ОДЗ уравнения — пустое множество, уравнение решений не имеет.

Ответ: корней нет.

г) Второй способ . Решение. Исходное уравнение равносильно системе или Система решений не имеет, значит, и исходное уравнение тоже решений не имеет.

Ответ: корней нет .

Решение. Произведение двух сомножителей равно нулю, если хотя бы один из сомножителей равен нулю, а второй сомножитель при этом имеет смысл.

а) х 2 — 9 = 0, х = ± 3.

Проверим, имеет ли смысл при этих значениях второй сомножитель.

При x 1 =-3, — имеет смысл, поэтому — 3 — корень уравнения; при х 2 = 3, — не имеет смысла, 3 не является корнем уравнения.

Уравнение равносильно системе или

Решением системы является число 1 . Так как х 2 — 9 имеет смысл при всех значениях переменной, то 1 является и корнем исходного уравнения.

5) Выводы. При решении иррациональных уравнений — возведении обеих частей уравнения в чётную степень, принадлежность полученных корней ОДЗ уравнения не позволяет сделать вывод, о том являются ли эти корни посторонними или нет. Поэтому выполнение проверки корней обязательно и это этап решения уравнения. Если корень не принадлежит ОДЗ то он, конечно, посторонний корень уравнения. В то же время, записывая систему равносильную уравнению, мы не нарушаем логики решения уравнения: ведь уравнение с пустой ОДЗ равносильно системе, не имеющей решений.

VI Самостоятельная работа

Решить уравнение двумя способами.

I вариант II вариант

VII Домашнее задание

§ 55 по учебнику; № 1673 по задачнику (решить двумя способами).

🎥 Видео

Операции над множествамиСкачать

Операции  над  множествами

11 класс, 26 урок, Равносильность уравненийСкачать

11 класс, 26 урок, Равносильность уравнений

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)

Уравнения. Основные понятия.Скачать

Уравнения. Основные понятия.

Информатика. Алгебра логики: Теория множеств. Центр онлайн-обучения «Фоксфорд»Скачать

Информатика. Алгебра логики: Теория множеств. Центр онлайн-обучения «Фоксфорд»

Конъюнкция, дизъюнкция, импликация, эквиваленция, отрицание. На примерах из жизни. Логика.Скачать

Конъюнкция, дизъюнкция, импликация, эквиваленция, отрицание. На примерах из жизни. Логика.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

6 класс, 4 урок, Множество. Объединение и пересечение множествСкачать

6 класс, 4 урок, Множество. Объединение и пересечение множеств

Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

9 класс, 10 урок, Основные понятия, связанные с системами уравнений и неравенств с двумя переменнымиСкачать

9 класс, 10 урок, Основные понятия, связанные с системами уравнений и неравенств с двумя переменными

Пересечение и объединение множеств. Алгебра, 8 классСкачать

Пересечение и объединение множеств. Алгебра, 8 класс

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика
Поделиться или сохранить к себе: