Основные методы решения нелинейных уравнений

Решение нелинейных уравнений

Уравнения, в которых содержатся неизвестные функции, произведенные в степень больше единицы, называются нелинейными.
Например, y=ax+b – линейное уравнение, х^3 – 0,2x^2 + 0,5x + 1,5 = 0 – нелинейное (в общем виде записывается как F(x)=0).

Системой нелинейных уравнений считается одновременное решение нескольких нелинейных уравнений с одной или несколькими переменными.

Существует множество методов решения нелинейных уравнений и систем нелинейных уравнений, которые принято относить в 3 группы: численные, графические и аналитические. Аналитические методы позволяют определить точные значения решения уравнений. Графические методы наименее точны, но позволяют в сложных уравнениях определить наиболее приближенные значения, с которых в дальнейшем можно начинать находить более точные решения уравнений. Численное решение нелинейных уравнений предполагает прохождения двух этапов: отделение корня и его уточнение до определенно заданной точности.
Отделение корней осуществляется различными способами: графически, при помощи различных специализированных компьютерных программ и др.

Рассмотрим несколько методов уточнения корней с определенно заданной точностью.

Методы численного решения нелинейных уравнений

Метод половинного деления.

Суть метода половинного деления заключается в делении интервала [a,b] пополам (с=(a+b)/2) и отбрасывании той части интервала, в которой отсутствует корень, т.е. условие F(a)xF(b)
Основные методы решения нелинейных уравнений

Рис.1. Использование метода половинного деления при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0, то начала отрезка a переносится в x (a=x), иначе, конец отрезка b переносится в точку x (b=x). Полученный отрезок делим опять пополам и т.д. Весь произведенный расчет отражен ниже в таблице.

Основные методы решения нелинейных уравнений

Рис.2. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

При использовании метода хорд, задается отрезок [a,b], в котором есть только один корень с установленной точностью e. Через точки в отрезке a и b, которые имеют координаты (x(F(a);y(F(b)), проводится линия (хорда). Далее определяются точки пересечения этой линии с осью абсцисс (точка z).
Если F(a)xF(z)
Основные методы решения нелинейных уравнений

Рис.3. Использование метода хорд при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0;

Определим вторую производную F’’(x) = 6x-0,4.

F’’(-1)=-6,4 0 соблюдается, поэтому для определения корня уравнения воспользуемся формулой:

Основные методы решения нелинейных уравнений
, где x0=b, F(a)=F(-1)=-0,2

Весь произведенный расчет отражен ниже в таблице.

Основные методы решения нелинейных уравнений

Рис.4. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Метод касательных (Ньютона)

Данный метод основывается на построении касательных к графику, которые проводятся на одном из концов интервала [a,b]. В точке пересечения с осью X (z1) строится новая касательная. Данная процедура продолжается до тех пор, пока полученное значение не будет сравним с нужным параметром точности e (F(zi)
Основные методы решения нелинейных уравнений

Рис.5. Использование метода касательных (Ньютона) при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0 выполняется, поэтому расчеты производим по формуле:

Основные методы решения нелинейных уравнений

Весь произведенный расчет отражен ниже в таблице.

Основные методы решения нелинейных уравнений

Рис.6. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Видео:10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Нелинейные уравнения и системы уравнений. Методы их решения.

Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Нелинейные уравнения и системы уравнений. Методы их решения.

Одной из важных задач прикладной математики является задача решения нелинейных уравнений, встречающихся в разных областях научных исследований.

Под нелинейными уравнениями ( nonlinear equations ) понимаются алгебраические и трансцендентные уравнения с одним неизвестным в следующем виде:

Основные методы решения нелинейных уравнений,

где Основные методы решения нелинейных уравнений— действительное число, Основные методы решения нелинейных уравнений— нелинейная функция.

Под системой нелинейных уравнений понимается система алгебраических и трансцендентных уравнений в следующем виде:

Основные методы решения нелинейных уравнений

где < Основные методы решения нелинейных уравнений> — действительные числа, < Основные методы решения нелинейных уравненийОсновные методы решения нелинейных уравнений> — нелинейные функции.

Алгебраическое уравнение — это уравнение содержащие только алгебраические функции, которое можно представить многочленом n ‐ ой степени с действительными коэффициентами (целые, рациональные, иррациональные) в следующем виде:

Основные методы решения нелинейных уравнений.

Трансцендентное уравнение – это уравнение содержащие в своем составе функции, которые являются не алгебраическими. Простейшими примерами таких функций служат показательная функция, тригонометрическая функция, логарифмическая функция и т.д.

Решением нелинейного уравнения (или системы нелинейных уравнений) называют совокупность (группа) чисел Основные методы решения нелинейных уравнений, которые, будучи подставлены на место неизвестных Основные методы решения нелинейных уравнений, обращают каждое уравнение (или систему уравнений) в тождество:

Основные методы решения нелинейных уравнений.

Для решения нелинейных уравнений (или систем нелинейных уравнений) существует несколько методов решения: графические, аналитические и численные методы.

Графические методы наименее точны, но позволяют в сложных уравнениях определить наиболее приближенные значения, с которых в дальнейшем можно начинать находить более точные решения уравнений.

Аналитические методы (или прямые методы) позволяют определить точные значения решения уравнений. Данный метод позволяет записать корни в виде некоторого соотношения (формул). Подобные методы развиты для решения простейших тригонометрических, логарифмических, показательных, а также алгебраических уравнений. Однако подавляющее большинство нелинейных уравнений, встречающихся на практике, не удается решить прямыми методами. В таких случаях обращаются к численным методам, позволяющим получить приближенное значение корня с любой заданной точностью Основные методы решения нелинейных уравнений.

Численные методы решения нелинейных уравнений – это итерационный процесс расчета, который состоит в последовательном уточнении начального приближения значений корней уравнения (системы уравнений). При численном подходе задача о решении нелинейных уравнений разбивается на два этапа:

— локализация (отделение) корней

› Под локализацией корней понимается процесс отыскания приближенного значения корня или нахождение таких отрезков, в пределах которых содержится единственное решение

› Под уточнением корней понимается процесс вычисления приближенных значений корней с заданной точностью по любому численному методу решения нелинейных уравнений.

Недостатком почти всех итерационных методов нахождения корней является то, что они при однократном применении позволяют найти лишь один корень функции, к тому же, мы не знаем какой именно. В случае повторения итерационного процесса при изменении стартовых точек отсутствуют гарантии, что найдется новый корень уравнения, так как итерационный процесс может сойтись к найденному корню.

Для поиска других корней используется метод удаления корней. Данный метод основан на принципе создания новой функции Основные методы решения нелинейных уравненийпутем деление основной функции на найденный корень уравнения:

Основные методы решения нелинейных уравнений.

Так, например, если Основные методы решения нелинейных уравнений— корень функции Основные методы решения нелинейных уравненийто, чтобы произвести удаление найденного корня и поиск оставшихся корней исходной функции необходимо создать функцию Основные методы решения нелинейных уравнений. Точка Основные методы решения нелинейных уравненийбудет являться корнем функции Основные методы решения нелинейных уравненийна единицу меньшей кратности, чем Основные методы решения нелинейных уравнений, при этом все остальные корни у функций Основные методы решения нелинейных уравненийи Основные методы решения нелинейных уравненийсовпадают с учетом кратности. Повторяя указанную процедуру, можно найти все корни Основные методы решения нелинейных уравненийс учетом кратности.

Следует обратить внимание, что когда производим деление на тот или иной корень Основные методы решения нелинейных уравнений, то в действительности мы делим лишь на найденное приближение Основные методы решения нелинейных уравнений, и, тем самым, несколько сдвигаем корни вспомогательной функции относительно истинных корней функции Основные методы решения нелинейных уравнений. Это может привести к значительным погрешностям, если процедура отделения применялась уже достаточное число раз. Чтобы избежать этого, с помощью вспомогательных функций вычисляются лишь первые итерации, а окончательные проводятся по исходной функции Основные методы решения нелинейных уравнений, используя в качестве стартового приближения, последнюю итерацию, полученную по вспомогательной функции.

Локализация корней.

› Локализация корней аналитическим способом

Для отделения корней уравнения Основные методы решения нелинейных уравненийнеобходимо иметь критерий, позволяющий убедится, что, во-первых, на рассматриваемом отрезке Основные методы решения нелинейных уравненийимеется корень, а, во-вторых, что этот корень единственный на указанном отрезке. Если функция Основные методы решения нелинейных уравненийнепрерывна на отрезке Основные методы решения нелинейных уравнений, а на концах отрезка её значения имеют разные знаки Основные методы решения нелинейных уравнений, то на этом отрезке расположен, по крайней мере, один корень. Дополнительным условием, обеспечивающем единственность корня на отрезке Основные методы решения нелинейных уравненийявляется требование монотонности функции на этом отрезке. В качестве признака монотонности функции можно воспользоваться условием знакопостоянства первой производной Основные методы решения нелинейных уравнений. Таким образом, если на отрезке Основные методы решения нелинейных уравненийфункция непрерывна и монотонна, а ее значения на концах отрезка имеют разные знаки, то на рассматриваемом отрезке существует один и только один корень.

› Локализация корней табличным способом

Допустим, что все интересующие нас корни уравнения Основные методы решения нелинейных уравненийнаходятся на отрезке Основные методы решения нелинейных уравнений. Выбор этого отрезка (интервала поиска корней) может быть сделан, например, на основе анализа конкретной физической или иной задачи. Будем вычислять значения Основные методы решения нелинейных уравнений, начиная с точки Основные методы решения нелинейных уравнений, двигаясь вправо с некоторым шагом h . Как только обнаруживается пара соседних значений Основные методы решения нелинейных уравнений, имеющих разные знаки, так соответствующие значения аргумента x можно считать границами отрезка, содержащего корень.

Надежность рассмотренного подхода к отделению корней уравнений зависит как от характера функции Основные методы решения нелинейных уравнений, так и от выбранной величины шага h. Действительно, если при достаточно малом значении h ( Основные методы решения нелинейных уравнений) на границах текущего отрезка Основные методы решения нелинейных уравненийфункция Основные методы решения нелинейных уравненийпринимает значения одного знака, то естественно ожидать, что уравнение Основные методы решения нелинейных уравненийкорней на этом отрезке не имеет. Однако, это не всегда так: при несоблюдении условия монотонности функции Основные методы решения нелинейных уравненийна отрезке Основные методы решения нелинейных уравнениймогут оказаться корни уравнения (рис. 1, а). Также несколько корней на отрезке Основные методы решения нелинейных уравнениймогут оказаться и при выполнении условия Основные методы решения нелинейных уравнений(рис. 1, б). Предвидя подобные ситуации, следует выбирать достаточно малые значения h .

Основные методы решения нелинейных уравнений

Рис. 1. Варианты поведения функции на интервале локализации корня

Поскольку данный способ предполагает выполнение лишь элементарных арифметических и логических операций, количество которых может быть велико при малых значениях h , для его реализации целесообразно использовать вычислительные возможности компьютера.

Отделяя, таким образом, корни, мы, по сути, получаем их приближенные значения с точностью до выбранного шага. Так, например, если в качестве приближенного значения корня взять середину отрезка локализации, то абсолютная погрешность этого значения не будет превосходить половины шага поиска ( h /2). Уменьшая шаг в окрестности каждого корня, можно, в принципе, повысить точность отделения корней до любого наперед заданного значения. Однако такой способ требует большого объема вычислений. Поэтому при проведении численных экспериментов с варьированием параметров задачи, когда приходится многократно осуществлять поиск корней, подобный метод не годится для уточнения корней и используется только для отделения (локализации) корней, т.е. определения начальных приближений к ним. Уточнение корней проводится с помощью других, более экономичных методов.

Уточнение корней.

На данном этапе задача состоит в получении приближенного значения корня, принадлежащего отрезку Основные методы решения нелинейных уравнений, с заданной точностью (погрешностью) e . Это означает, что вычисленное значение корня Основные методы решения нелинейных уравнений должно отличаться от точного Основные методы решения нелинейных уравненийне более чем на величину e :

Основные методы решения нелинейных уравнений

Существует большое количество численных методов решения нелинейных уравнений для уточнения корней, которые условно можно разделить:

› Методы решение уравнений с одним неизвестным. Основными представителями являются:

— метод половинного деления;

— метод простой итерации;

— метод Ньютона для уравнения с одним неизвестным;

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Численные методы решения нелинейных уравнений

Если законы функционирования модели нелинейны, а моделируемые процесс или система обладают одной степенью свободы (т.е. имеют одну независимую переменную), то такая модель, как правило, описывается одним нелинейным уравнением.

Необходимость отыскания корней нелинейных уравнений встречается в расчетах систем автоматического управления и регулирования, собственных колебаний машин и конструкций, в задачах кинематического анализа и синтеза, плоских и пространственных механизмов и других задачах.

Дано нелинейное уравнение:

Основные методы решения нелинейных уравнений( 4.1)

Необходимо решить это уравнение, т. е. найти его корень Основные методы решения нелинейных уравнений.

Основные методы решения нелинейных уравнений

Если функция имеет вид многочлена степени m,

Основные методы решения нелинейных уравнений

где ai — коэффициенты многочлена, Основные методы решения нелинейных уравнений, то уравнение f(x)=0 имеет m корней (рис. 4.2).

Основные методы решения нелинейных уравнений

Если функция f(x) включает в себя тригонометрические или экспоненциальные функции от некоторого аргумента x , то уравнение (4.1) называется трансцендентным уравнением .

Основные методы решения нелинейных уравнений

Основные методы решения нелинейных уравнений

Такие уравнения обычно имеют бесконечное множество решений.

Как известно, не всякое уравнение может быть решено точно. В первую очередь это относится к большинству трансцендентных уравнений .

Доказано также, что нельзя построить формулу, по которой можно было бы решать произвольные алгебраические уравнения степени, выше четвертой.

Однако точное решение уравнения не всегда является необходимым. Задачу отыскания корней уравнения можно считать практически решенной, если мы сумеем найти корни уравнения с заданной степенью точности . Для этого используются приближенные (численные) методы решения.

Большинство употребляющихся приближенных методов решения уравнений являются, по существу, способами уточнения корней. Для их применения необходимо знание интервала изоляции [a,b] , в котором лежит уточняемый корень уравнения (рис. 4.3).

Основные методы решения нелинейных уравнений

Процесс определения интервала изоляции [a,b] , содержащего только один из корней уравнения, называется отделением этого корня.

Процесс отделения корней проводят исходя из физического смысла прикладной задачи, графически, с помощью таблиц значений функции f(x) или при помощи специальной программы отделения корней. Процедура отделения корней основана на известном свойстве непрерывных функций: если функция непрерывна на замкнутом интервале [a,b] и на его концах имеет различные знаки, т.е. f(a)f(b) , то между точками a и b имеется хотя бы один корень уравнения (1). Если при этом знак функции f'(x) на отрезке [a,b] не меняется, то корень является единственным на этом отрезке.

Процесс определения корней алгебраических и трансцендентных уравнений состоит из 2 этапов:

  1. отделение корней, — т.е. определение интервалов изоляции [a,b] , внутри которого лежит каждый корень уравнения;
  2. уточнение корней, — т.е. сужение интервала [a,b] до величины равной заданной степени точности Основные методы решения нелинейных уравнений.

Для алгебраических и трансцендентных уравнений пригодны одни и те же методы уточнения приближенных значений действительных корней:

🌟 Видео

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.

Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных Уравнений

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравнения

Метод половинного деления решение нелинейного уравненияСкачать

Метод половинного деления решение нелинейного уравнения

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

4.2 Решение систем нелинейных уравнений. МетодыСкачать

4.2 Решение систем нелинейных уравнений. Методы

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравнений

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14
Поделиться или сохранить к себе: