Основное уравнение мкт газов через плотность

Основное уравнение МКТ

P — давление газа.
m — масса молекулы.
n — концентрация молекул.
-средний квадрат скорости.

Формула связывает микроскопическую величину — давление, которое может быть измерено манометром, c микроскопическими величинами, характеризующими молекулы.

m n = ρ (2)
ρ — плотность газа

Давление выражаем через его плотность: (3)

Средняя кинетическая энергия поступательного движения молекул:

Давление идеального газа пропорционально произведению числа молекул в единице объема на среднюю кинетическую энергию поступательного движения молекулы.

Видео:Физика 10 класс (Урок№18 - Основное уравнение МКТ.)Скачать

Физика 10 класс (Урок№18 - Основное уравнение МКТ.)

Основное уравнение молекулярно-кинетической теории (Ерюткин Е.С.)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Основное уравнение мкт газов через плотность

Как уже было сказано ранее, начиная с этого урока, мы приступаем к изучению только газов. На прошлом уроке мы дали представление о способах количественного описания некой порции вещества. Сейчас же мы начнём описывать газ со стороны его качественных характеристик (микро- и макропараметров). Мы сформулируем понятие об идеальном газе, опишем его параметры и введём соотношение, связывающее эти параметры (основное уравнение МКТ).

Видео:Урок 147. Задачи на основное уравнение МКТ идеального газаСкачать

Урок 147. Задачи на основное уравнение МКТ идеального газа

Уравнение МКТ идеального газа — основные понятия, формулы и определение с примерами

Содержание:

Фазовые состояния вещества:

В МКТ различают три фазовых (агрегатных) состояния вещества: жидкое, кристаллическое, газообразное (существует и четвертое состояние — плазма, и оно самое распространенное во Вселенной, ведь именно в состоянии плазмы находится вещество в звездах). Изменение фазового состояния называют фазовым переходом. Рассмотрим разные фазовые состояния вещества и выясним особенности движения и взаимодействия молекул вещества в разных состояниях.

Основное уравнение мкт газов через плотность
Слово «газ» происходит от греческого слова chaos («хаос»). Молекулы газов расположены беспорядочно и на расстояниях, которые в десятки раз больше размеров самих молекул. На таких расстояниях молекулы практически не взаимодействуют друг с другом. Непрерывно сталкиваясь, молекулы газов разлетаются во все стороны, пока не встретят какое-либо препятствие, например стенки сосуда. Именно поэтому газы не имеют формы и занимают весь предоставленный объем. Большими расстояниями между молекулами объясняется и тот факт, что газы легко сжимаются.Молекулы жидкости в целом расположены хаотично, однако в расположении ближайших молекул сохраняется определенный (ближний) порядок. Среднее расстояние между молекулами примерно равно размерам молекул, и межмолекулярные силы удерживают их около положения равновесия. Каждая молекула жидкости некоторое время (порядка Основное уравнение мкт газов через плотностьВ веществе, находящемся в твердом кристаллическом состоянии, молекулы расположены в определенном порядке (образуют кристаллическую решетку) на расстояниях, примерно равных размерам самих молекул, поэтому силы межмолекулярного взаимодействия удерживают их около положения равновесия. В отличие от жидкостей, перескакивания молекул в твердых телах происходят очень редко — каждая молекула сохраняет положение равновесия достаточно долго, а ее движение сводится к колебаниям около этого положения. Поэтому твердые тела сохраняют и объем, и форму; как и жидкость, их очень трудно сжать.

Молекулы некоторых твердых тел в целом расположены беспорядочно. Такое состояние вещества называют аморфным. Вещества в аморфном состоянии напоминают очень вязкие жидкости. Так, если положить в сосуд кусочки смолы (аморфное вещество), со временем смола сольется и примет форму сосуда.

В отличие от кристаллических, аморфные вещества не имеют определенной температуры плавления, а переходят в жидкое состояние постепенно размягчаясь. Аморфное состояние веществ неустойчиво — постепенно происходит кристаллизация. Так, стекло имеет аморфную структуру, но со временем в нем образуются помутнения — кристаллики кварца. Сахар — это молекулярный кристалл. Если его расплавить и охладить, получим леденец — аморфное состояние сахара. Но через некоторое время в леденце начнут расти кристаллики сахара. Именно по этой причине засахаривается варенье.

  • Молекулы, атомы, ионы находятся в непрерывном хаотическом движении. Именно движением частиц вещества можно объяснить такие явления, как броуновское движение (видимое в микроскоп хаотическое перемещение малых макрочастиц, взвешенных в жидкости или газе) и диффузия (взаимное проникновение соприкасающихся веществ друг в друга).
  • Частицы вещества взаимодействуют друг с другом. Основная причина межмолекулярного взаимодействия — электрическое притяжение и отталкивание заряженных частиц, образующих атом. На расстояниях, которые больше размеров молекул, молекулы притягиваются друг к другу; на расстояниях, которые незначительно меньше размера молекул, — отталкиваются.
  • Вещество может находиться в твердом, жидком и газообразном фазовых (агрегатных) состояниях в зависимости от того, как расположены, как двигаются и как взаимодействуют его частицы.

Видео:Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.

Основное уравнение МКТ идеального газа

Каждое макроскопическое тело состоит из огромного количества молекул. МКТ рассматривает строение и свойства макроскопических тел, а также процессы, происходящие в этих телах, с точки зрения их молекулярной структуры. Поведение макроскопических тел описывается рядом физических величин — микроскопическими и макроскопическими параметрами. Выясним, что это за параметры и как они связаны.

Микроскопические и макроскопические параметры

Рассмотрим систему, состоящую из очень большого количества атомов или молекул. Такой системой, например, может быть какой-либо газ. В любой момент времени каждая микрочастица газа обладает энергией, движется с некоторой скоростью, имеет массу.

Физические величины, характеризующие свойства и поведение отдельных микрочастиц вещества, называют микроскопическими параметрами.

Некоторые микроскопические параметры могут изменяться без внешнего воздействия на систему. Например, скорости движения молекул газа непрерывно изменяются в результате их столкновений друг с другом.

В то же время газ данной массы занимает некоторый объем, создает давление, имеет температуру. Значения этих физических величин определяются совокупностью множества молекул — например, мы не можем говорить о давлении, температуре или плотности одной молекулы.

Физические величины, характеризующие свойства и поведение макроскопических тел без учета их молекулярного строения, называют макроскопическими параметрами.

Макроскопические параметры могут изменяться только за счет внешних воздействий на систему или за счет теплообмена. Так, чтобы увеличить давление газа, газ нужно нагреть (передать определенное количество теплоты) или сжать (то есть совершить работу).

Какой газ называют идеальным

Количественные закономерности, связывающие макроскопические и микроскопические параметры тел, достаточно сложны. Рассмотрим самый простой случай — достаточно разреженные газы (такими, например, являются обычные газы при нормальных условиях). В разреженных газах расстояние между молекулами во много раз превышает размеры самих молекул, поэтому эти молекулы можно считать материальными точками, а их взаимодействием, за исключением моментов соударения, можно пренебречь. Кроме того, свойства разреженных газов практически не зависят от их молекулярного состава, а столкновения молекул такого газа приближаются к упругим. Таким образом, вместо реальных газов можно рассматривать их физическую модель — идеальный газ.

Идеальный газ — это физическая модель газа, молекулы которого принимают за материальные точки, не взаимодействующие друг с другом на расстоянии и упруго взаимодействующие в моменты столкновений.

Основное уравнение МКТ идеального газа

Начнем с такого микроскопического параметра, как скорость движения молекул. Обратим внимание на то, что бессмысленно рассматривать движение каждой отдельной молекулы и устанавливать скорость ее движения в данный момент времени, да это и невозможно: число молекул огромно, и за секунду каждая молекула изменяет скорость своего движения миллиарды раз. Поэтому физики используют средние значения скоростей молекул. Важнейшим в МКТ является понятие средний квадрат скоростиОсновное уравнение мкт газов через плотность:

Основное уравнение мкт газов через плотность

где N — число молекул; Основное уравнение мкт газов через плотность— скорости отдельных молекул.

Квадратный корень из среднего квадрата скорости называют средней квадратичной скоростью движения молекул (Основное уравнение мкт газов через плотность):

Основное уравнение мкт газов через плотность

Понятно, что средний квадрат скорости (а следовательно, и среднюю квадратичную скорость) невозможно определить с помощью прямых измерений. Однако эта величина связана с определенными макроскопическими (измеряемыми) параметрами газа, например с давлением.

Основное уравнение мкт газов через плотность

Напомним, что давление газа обусловлено ударами его молекул (рис. 28.1). Находясь в непрерывном хаотическом движении, молекулы газа сталкиваются со стенками сосуда и поверхностью любого тела в газе, действуя на них с некоторой силой. Суммарная сила воздействия частиц на единицу площади поверхности и есть давление газа: Основное уравнение мкт газов через плотность. Нетрудно догадаться: чем быстрее движутся молекулы газа и чем больше масса этих молекул, тем сильнее будут их удары и тем большее давление создает газ.

Уравнение зависимости давления p идеального газа от массы Основное уравнение мкт газов через плотностьего молекул и среднего квадрата скорости Основное уравнение мкт газов через плотностьих движения — это основное уравнение молекулярно-кинетической теории идеального газа:

Основное уравнение мкт газов через плотность

Здесь n — концентрация молекул газа — физическая величина, равная числу молекул в единице объема газа: Основное уравнение мкт газов через плотность

Средняя кинетическая энергия поступательного движения молекул идеального газа (кинетическая энергия поступательного движения, в среднем приходящаяся на одну молекулу) равна: Основное уравнение мкт газов через плотность. Поэтому основное уравнение МКТ идеального газа можно записать и так: Основное уравнение мкт газов через плотность

Пример решения задачи

Определите плотность идеального газа, находящегося под давлением Основное уравнение мкт газов через плотностьПа, если средняя квадратичная скорость движения его молекул 500 м/с.

Основное уравнение мкт газов через плотность

Решение:

В задаче нужно найти макроскопический параметр — плотность газа. Для решения задачи воспользуемся основным уравнением МКТ идеального газа:

Основное уравнение мкт газов через плотность

Поскольку ρ = Основное уравнение мкт газов через плотность, а m=N Основное уравнение мкт газов через плотность(масса газа равна произведению числа молекул газа на массу одной молекулы), то Основное уравнение мкт газов через плотностьконцентрация молекул газа. Заменив в формуле (1) выражение n Основное уравнение мкт газов через плотностьна ρ, получим:

Основное уравнение мкт газов через плотность

Отсюда Основное уравнение мкт газов через плотность(Формулу (2) следует запомнить!)

Проверим единицу, найдем значение искомой величины: Основное уравнение мкт газов через плотность

Анализ результата. Плотности газов при нормальных условиях колеблются от 0,09 до 1,5 кг/м3, то есть получен реальный результат.

Ответ: ρ = 1, 2 кг/м3.

  • Физические величины, характеризующие свойства и поведение отдельных микрочастиц вещества, называют микроскопическими параметрами. Физические величины, характеризующие свойства и поведение макроскопических тел без учета их молекулярного строения, называют макроскопическими параметрами.
  • Идеальный газ — это физическая модель газа, молекулы которого принимают за материальные точки, не взаимодействующие друг с другом на расстоянии и упруго взаимодействующие в момент столкновения.
  • Основное уравнение МКТ идеального газа связывает макроскопический параметр (давление) с микроскопическими параметрами (массой и средним квадратом скорости движения молекул):Основное уравнение мкт газов через плотность. Это уравнение можно записать в виде: Основное уравнение мкт газов через плотность.
Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Уравнение состояния идеального газа
  • Температура в физике
  • Парообразование и конденсация
  • Тепловое равновесие в физике
  • Движение тел под воздействием нескольких сил
  • Абсолютно упругие и неупругие столкновения тел
  • Механизмы, работающие на основе правила моментов
  • Идеальный газ в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🔍 Видео

Решение задач на основное уравнение МКТ идеального газа | Физика 10 класс #29 | ИнфоурокСкачать

Решение задач на основное уравнение МКТ идеального газа | Физика 10 класс #29 | Инфоурок

Урок 146. Основное уравнение МКТ идеального газа - 2Скачать

Урок 146. Основное уравнение МКТ идеального газа - 2

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | ИнфоурокСкачать

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | Инфоурок

Физика 10 Идеальный газ Основное уравнение МКТ идеального газа Решение задачСкачать

Физика 10 Идеальный газ  Основное уравнение МКТ идеального газа  Решение задач

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

Все формулы молекулярной физики, МКТ 10 класс, + преобразования и шпаргалкиСкачать

Все формулы молекулярной физики,  МКТ 10 класс,  + преобразования и шпаргалки

10 класс, 2 урок, Основное уравнение молекулярно кинетической теорииСкачать

10 класс, 2 урок, Основное уравнение молекулярно кинетической теории

Физика. МКТ: Основное уравнение МКТ. Центр онлайн-обучения «Фоксфорд»Скачать

Физика.  МКТ: Основное уравнение МКТ. Центр онлайн-обучения «Фоксфорд»

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. Практическая часть.10 классСкачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. Практическая часть.10 класс

#3 Идеальный газ + РЕШЕНИЕ ЗАДАЧ. Основное уравнение МКТ. Давление газа.Скачать

#3 Идеальный газ + РЕШЕНИЕ ЗАДАЧ. Основное уравнение МКТ. Давление газа.

Тема 2. Макро и микропараметры. Идеальный газ. Основное уравнение МКТ идеального газаСкачать

Тема 2. Макро и микропараметры. Идеальный газ. Основное уравнение МКТ идеального газа

Физика 10 класс : Основное уравнение молекулярно-кинетической теории идеального газаСкачать

Физика 10 класс : Основное уравнение молекулярно-кинетической теории идеального газа

Молекулярно-кинетическая теория | ЕГЭ по физике 2023 | Снежа Планк из ВебиумСкачать

Молекулярно-кинетическая теория | ЕГЭ по физике 2023 | Снежа Планк из Вебиум

Физика. 10 класс. Идеальный газ. Основное уравнение теории газов /19.11.2020/Скачать

Физика. 10 класс. Идеальный газ. Основное уравнение теории газов /19.11.2020/

Вывод основного уравнения молекулярно кинетической теории.Скачать

Вывод основного уравнения молекулярно кинетической теории.

Основные положения молекулярно-кинетической теории | Физика 10 класс #24 | ИнфоурокСкачать

Основные положения молекулярно-кинетической теории | Физика 10 класс #24 | Инфоурок
Поделиться или сохранить к себе: