Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Механизмы реакций в органической химии

Ионный (правило В.В. Марковникова) и радикальный механизмы реакций в органической химии.

Видео:Как за 4 МИНУТЫ выучить Химию? Химическое Количество, Моль и Закон АвогадроСкачать

Как за 4 МИНУТЫ выучить Химию? Химическое Количество, Моль и Закон Авогадро

Механизмы разрыва химических связей в органических реакциях

Гомолитический разрыв связи – это такой разрыв химической связи, когда каждый атом получает при разрыве связи по одному электрону из общей электронной пары.

Образующиеся при этом частицы — это свободные радикалы.

Свободные радикалы – это частицы, каждая из которых содержит один неспаренный электрон.

A:B A∙ + ∙B

Гомолитический разрыв связи характерен для слабо полярных или неполярных связей.

Условия протекания радикальных реакций:

  • Повышенная температура;
  • Неполярный растворитель или отсутствие растворителя
  • Реакция протекает под действием света или ультрафиолетового излучения
  • В системе присутствуют свободные радикалы или источники свободных радикалов.

Например , взаимодействие метана с хлором протекает по цепному радикальному механизму.

То есть реакция протекает как цепь последовательных превращений с участием свободных радикалов.

Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат один или несколько неспаренных электронов. Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Этапы радикально-цепного процесса:

Стадия 1. Инициирование цепи. Под действием кванта света или при нагревании молекула галогена распадается на радикалы:

Cl:Cl → Cl⋅ + ⋅Cl

Стадия 2. Развитие цепи. Радикалы взаимодействуют с молекулами с образованием новых молекул и радикалов. Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород. При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с молекулой хлора:

CH4 + ⋅Cl → CH3⋅ + HCl

Стадия 3. Обрыв цепи. При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами. При этом образуются молекулы, т.е. радикальный процесс обрывается. Могут столкнуться разные радикалы, в том числе два метильных радикала:

Гетеролитический (ионный) разрыв связи это такой разрыв химической связи, когда один из атомов получает при разрыве общую электронную пару.

При гетеролитическом разрыве связи образуются ионы – положительно заряженный катион и отрицательно заряженный анион.

A:B A: – + B +

Если на атоме углерода сосредоточен положительный заряд, то такой катион называют карбокатионом.

Если на атоме углерода сосредоточен отрицательный заряд, то такой анион называют карбоанионом.

Гетеролитический (ионный) механизм характерен для полярных и легко поляризуемых связей.

Условия протекания ионных реакций:

  • Относительно невысокая температура;
  • Использование полярного растворителя;
  • Использование катализатора.

Присоединение галогеноводородов (гидрогалогенирование). Например, этилен взаимодействует с бромоводородом:

Реакция протекают по механизму электрофильного присоединения в несколько стадий.

I стадия. Электрофилом является протон Н + в составе бромоводорода. Катион водорода присоединяется к атому углерода при двойной связи и образуется карбокатион . На втором атоме углерода, который потерял электроны π-связи, образуется положительный заряд:

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

II стадия. Карбокатион взаимодействует с анионом Br – :

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

При присоединении галогеноводородов и других полярных молекул к симметричным алкенам образуется одно вещество.

Например , при присоединении бромоводорода к этилену образуется только бромэтан.

При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при взаимодействии полярных молекул типа НХ с несимметричными алкенами водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.

Например , при взаимодействии хлороводорода HCl с пропиленом атом водорода присоединяется преимущественно к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан. При этом 1-хлорпропан образуется в незначительном количестве:

В некоторых случаях присоединение к двойным связям происходит против правила Марковникова.

Исключения из правила Марковникова:

1) Если в молекуле присутствует заместитель, который оттягивает на себя электронную плотность двойной связи.

Например , при взаимодействии 3-хлорпропена с хлороводородом HCl преимущественно образуется 1,3-дихлорпропан. Атом хлора смещает к себе электронную плотность, поэтому π-электронная плотность двойной связи смещена к менее гидрогенизированному атому углерода:

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

2) Если в реакционной системе присутствуют свободные радикалы или источники свободных радикалов, то реакция присоединения полярных молекул вида НХ к двойной связи протекает по радикальному механизму против правила Марковникова.

Например , при присоединении бромоводорода к пропилену в присутствии пероксидов (H2O2 или R2O2) преимущественно образуется 1-бромпропан:

Видео:Ковалентная Неполярная Связь — Химическая связь // Химия 8 классСкачать

Ковалентная Неполярная Связь — Химическая связь // Химия 8 класс

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

ХИМИЯ – это область чудес, в ней скрыто счастье человечества,

величайшие завоевания разума будут сделаны

именно в этой области.(М. ГОРЬКИЙ)

Таблица
Менделеева

Универсальная таблица растворимости

Коллекция таблиц к урокам по химии

Видео:Химия. Способы разрыва связей в органической химииСкачать

Химия. Способы разрыва связей в органической химии

Электронная природа химических связей в органических соединениях. Способы разрыва ковалентной связи

Данный урок поможет вам получить представление о теме «Ковалентная связь в органических соединениях». Вы вспомните природу химических связей. Узнаете о том, за счет чего образуется ковалентная связь, что является основой этой связи. На этом уроке также рассматривается принцип построения формул Льюиса, рассказывается о характеристиках ковалентной связи (полярности, длине и прочности), объясняется теория А. Бутлерова

I. Электронная природа химических связей в органических соединениях

1. Все органические вещества содержат углерод. В молекулах органических веществ углерод переходит в возбуждённое состояние:

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

2. Органическим соединениям свойственны ковалентные связи. Ковалентная связь в молекулах характеризуется: энергией, длиной, насыщаемостью и пространственной направленностью.

а) Из курса химии 8 класса вы знаете, что ковалентная связь образуется за счёт перекрывания электронных облаков, при этом выделяется энергия, чем больше перекрывание, тем больше выделяется энергии и тем прочнее связь.

Типы перекрываний электронных облаков в порядке возрастания их прочности и энергии выделяемой при образовании:

σ(s s)

б) Длина связи определяется расстоянием между центрами ядер связывающихся атомов и измеряется в нанометрах (1 нм = 10 -9 м). С повышением кратности связи (одинарная, двойная, тройная) длина становится меньше, а энергия выше:

в) Под насыщаемостью связи понимают способность образовывать строго определённое количество ковалентных связей.

г) Направленность ковалентной связи определяется взаимным расположением электронных облаков, участвующих в образовании химической связи. Ковалентная связь образуется в направлении максимального перекрывания электронных орбиталей взаимодействующих атомов.

Вы уже знаете, что атом углерода содержит на внешнем уровне четыре валентных электрона:

1 электрон на s – орбитали сферической формы

3 электрона на трёх p – орбиталях, орбитали имеют форму гантели и расположены под углом 90˚.

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Таким образом можно предположить, что в молекуле метана CH4 атом углерода не может образовать 4 одинаковых связи с четырьмя атомами водорода (1 атом водорода имеет 1 электрон на s – орбитали сферической формы). Однако экспериментально доказано, что в молекуле метана все связи С – Н равноценны и направлены к вершинам правильного тетраэдра под углом 109˚28`.

В 1931 г. американский учёный Л. Полинг доказал, что в молекуле метана в момент образования молекулы электронные облака смешиваются и образуют гибридные электронные облака, происходит процесс гибридизации.

II. Гибридизация атомных орбиталей

Гибридизация – процесс смешения разных, но близких по энергии, орбиталей данного атома, с возникновением того же числа новых гибридных орбиталей, одинаковых по форме и энергии.

В зависимости от числа вступивших в гибридизацию орбиталей атом углерода может находиться в одном их трёх состояний гибридизации: sp 3 , sp 2 , sp.

1) sp 3 – гибридизация

Происходит смешение одной s и трёх p орбиталей. Образуются четыре одинаковые гибридные орбитали, расположенные относительно друг друга под тетраэдрическим углом 109˚28`. Образуются 4 ковалентные σ – связи.

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Рис. Строение молекулы метана СН4 (тетраэдрическое)

2) sp 2 – гибридизация:

Происходит смешение одной s и двух p орбиталей. Образуются три одинаковые гибридные орбитали, они расположены относительно друг друга под углом 120˚, лежат в одной плоскости и стремятся к вершинам треугольника. Образуются 3 ковалентные σ – связи.

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Оставшаяся одна негибридизованная орбиталь расположена перпендикулярно плоскости образования σ – связей и участвует в образовании П — связи.

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Рис. Строение молекулы этилена С2Н4 (плоское тригональное)

3) sp – гибридизация

Происходит смешение одной s и одной p орбитали. Образуются две одинаковые гибридные орбитали, они расположены относительно друг друга под углом 180˚, лежат на одной линии. Образуются 2 ковалентные σ – связи.

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Оставшиеся две негибридизованные орбитали расположены во взаимно перпендикулярных плоскостях и образуют две П — связи.

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Рис. Строение молекулы ацетилена С2Н2 (линейное)

Направленность гибридных орбиталей в пространстве, а следовательно, и геометрическое строение молекул зависят от типа гибридизации. На форму молекулы в пространстве влияет направленность только σ – связей.

III. Степень окисления атома углерода

Для атома углерода в органических соединениях характерны степени окисления от -4 до +4.

Укажите степени окисления всех элементов в CH3CH2OH

Решение. Нахождение степеней окисления в органических соединениях имеет свою специфику. В частности, необходимо отдельно находить степени окисления для каждого атома углерода. Рассуждать можно следующим образом. Рассмотрим, например, атом углерода в составе метильной группы (СН3 –) . Данный атом С соединен с 3 атомами водорода и соседним атомом углерода. По связи С-Н происходит смещение электронной плотности в сторону атома углерода (т. к. электроотрицательность углерода превосходит ЭО водорода). Если бы это смещение было полным, атом углерода приобрел бы заряд -3.

Атом С в составе группы -СН2ОН связан с двумя атомами водорода (смещение электронной плотности в сторону С), одним атомом кислорода (смещение электронной плотности в сторону О) и одним атомом углерода (можно считать, что смещения эл. плотности в этом случае не происходит). Степень окисления углерода равна -2 +1 +0 = -1.

Ответ: С -3 H +1 3C -1 H +1 2O -2 H +1 .

IV. Простая и кратная ковалентные связи

Способность атома углерода иметь разные степени окисления и лёгкость гибридизации позволяет атому углерода образовывать одинарные, и кратные (двойные и тройные связи) не только с другими атомами углерода, но и с атомами других элементов-органогенов:

СН3 – СН3 (1 σ – сигма связь С-С)

CH2=CH2 (1 σ – сигма связь С-С и 1 П – пи связь С-С)

CH ≡ CH (1 σ – сигма связь С-С и 2 П – пи связи С-С)

V. Способы разрыва связей в молекулах органических веществ и механизмы органических реакций

Разрыв ковалентной связи может происходить двумя способами.

1. Разрыв связи, при котором каждый атом получает по одному электрону из общей пары, называется гомолитическим:

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

В результате гомолитического разрыва образуются сходные по электронному строению частицы, каждая из которых имеет неспаренный электрон. Такие частицы называются свободными радикалами.

Радикал – свободный атом или частица с неспаренными электронами, неустойчив и способный быстро вступать в химическую реакцию.

Гомолитический разрыв сопровождает процессы, осуществляемые при высоких температурах; на свету; при радиоактивном облучении в отсутствие растворителя (в газовой фазе) или неполярных растворителях. Гомолитическому разрыву подвергаются малополярные или неполярные связи CC, CH, ClCl и др.

2. Если при разрыве связи общая электронная пара остается у одного атома, то такой разрыв называется гетеролитическим:

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

А + — электрофильная частица,

:В — — нуклеофильная частица

В результате образуются разноименно заряженные ионы — катион и анион. Если заряд иона сосредоточен на атоме углерода, то катион называют карбокатионом, а анион — карбанионом.

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Устойчивы более разветвлённые катионы!

Ионный тип разрыва связи характерен для П- связей и полярных σ – связей; при наличии полярного растворителя или катализатора.

Видео:Типы Химических Связей — Как определять Вид Химической Связи? Химия 9 классСкачать

Типы Химических Связей — Как определять Вид Химической Связи? Химия 9 класс

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Способы разрыва связей в молекулах органических веществ и механизмы органических реакций

Разрыв ковалентной связи может происходить двумя способами.

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

1. Разрыв связи, при котором каждый атом получает по одному электрону из общей пары, называется гомолитическим:

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

В результате гомолитического разрыва образуются сходные по электронному строению частицы, каждая из которых имеет неспаренный электрон. Такие частицы называются свободными радикалами.

Радикал – свободный атом или частица с неспаренными электронами, неустойчив и способный быстро вступать в химическую реакцию.

Гомолитический разрыв сопровождает процессы, осуществляемые при высоких температурах; на свету; при радиоактивном облучении в отсутствие растворителя (в газовой фазе) или неполярных растворителях. Гомолитическому разрыву подвергаются малополярные или неполярные связи C C , C H , Cl Cl и др.

2. Если при разрыве связи общая электронная пара остается у одного атома, то такой разрыв называется гетеролитическим:

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

А + — электрофильная частица, :В — — нуклеофильная частица

В результате образуются разноименно заряженные ионы — катион и анион. Если заряд иона сосредоточен на атоме углерода, то катион называют карбокатионом, а анион — карбанионом.

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Устойчивы более разветвлённые катионы!

Ионный тип разрыва связи характерен для П- связей и полярных σ – связей; при наличии полярного растворителя или катализатора.

Классификация органических реакций

I . Классификация по механизму реакции

В зависимости от способа разрыва ковалентной связи в реагирующей молекуле органические реакции подразделяются на радикальные и ионные реакции.

1. Гомолитические (радикальные) реакции

Например, галогенирование алканов (реакция цепная)

Внимание! В реакциях замещения алканов легче всего замещаются атомы водорода у третичных атомов углерода, затем у вторичных и, в последнюю очередь, у первичных.

1; 4 – первичные; 3 – вторичный; 2 – третичный.

2. Гетеролитические (ионные)

Гетеролитический распад ковалентной полярной связи приводит к образованию нуклеофилов (анионов) и электрофилов (катионов):

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Образовавшиеся ионы вступают в дальнейшие превращения, например:

Ионные реакции делятся по характеру реагента, действующего на молекулу, на электрофильные и нуклеофильные.

Электрофил E (любящий электроны) это частица, которая атакует атом углерода органического соединения, отнимая у него электронную пару (является акцептором электронов). Примеры частиц – электрофилов: H 3 O + , H + , HCl , HNO 3 , NO 2 + , AlCl 3 и др

Нуклеофил N (любящий ядро) – это частица, которая атакует атом углерода, предоставляя ему электронную пару (является донором электронов). Такие частицы, как правило, обладают основными свойствами. К ним относятся: OH , Cl , S 2- , NH 3 , H 2 O , R OH , CH 3 O и др

Нуклеофильные реакции – это реакции органических веществ с нуклеофилами, т.е. анионами или молекулами, которые предоставляют электронную пару на образование новой связи:

С H 3 Br (субстрат) + NaOH (реагент-нуклеофил) → CH 3 OH + NaBr

Электрофильные реакции – реакции органических соединений с электрофильными реагентами, т.е. катионами или молекулами, которые имеют свободную орбиталь, готовые принять электронную пару для образования новой связи

II . Классификация по направлению и конечному результату химического превращения

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Это реакции замещения, присоединения, отщепления (элиминирования), перегруппировки, окисления и восстановления

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Реакции замещения — замена атомов водорода или группы атомов на другой атом или группу атомов

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

1. Галогенирование (замещение атомов водорода на атомы галогенов)

2. Нитрование (замещение атомов водорода на нитрогруппу – NO 2 )

3. Алкилирование (замещение атомов водорода на углеводородный радикал – R )

Реакции присоединения — введение атома или группы атомов в молекулу непредельного соединения, что сопровождается разрывом в этом соединении π – связей

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

1. Гидрирование (присоединение H 2 к кратной связи или ароматическому ядру в присутствии катализатора – Ni , Pt , Pd ):

2 * . Гидратация (присоединение молекул Н2О):

CH≡CH + H2O → CH3-C=O (kat – соли ртути : Hg 2+ )

3 * . Гидрогалогенирование ( присоединение галогенводородов – HCl , HI , HBr . Для алкинов реакции идут труднее, поэтому используется AlCl 3 )

4. Галогенирование (присоединение галогенов С l 2 , Br 2 , I 2 )

*- использование правила Марковникова.

5. Реакции полимеризации

(получение полимера без образования побочного продукта)

Реакции отщепления (элиминирование) — реакции, в ходе которых происходит отщепление атомов или групп атомов от молекулы органического соединения с образование кратной связи

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

1. Дегидрирование (отщепление водорода):

2*. Дегидратация (отщепление воды)

2С H 3 — CH 2 — OH → CH 3 — CH 2 — O — CH 2 — CH 3 + H 2 O (получение простого эфира)

3*. Дегидрогалогенирование (отщепление галогенводорода — НГ)

*- использование правила Зайцева

4. Дегидроциклизация (отщеплении Н2 с одновременным замыканием углеродной цепи в цикл)

Реакции изомеризации (перегруппировка) — реакции с изменением строения вещества, но с сохранением химического состава

Определите способ разрыва связи в молекулах по следующим уравнениям cl ch4 ch3

Подробнее о типах реакций по направлению и конечному результату химического превращения см. приложениях

🔍 Видео

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

46. Гомолитический и гетеролитический разрывСкачать

46.  Гомолитический и гетеролитический разрыв

ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ: Химическое Количество Вещества, Моль, Молярная Масса и Молярный ОбъемСкачать

ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ: Химическое Количество Вещества, Моль, Молярная Масса и Молярный Объем

Химия 9 класс — Как определять Степень Окисления?Скачать

Химия 9 класс — Как определять Степень Окисления?

Решение задач на термохимические уравнения. 8 класс.Скачать

Решение задач на термохимические уравнения. 8 класс.

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по ХимииСкачать

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по Химии

Химия 8 класс — Ионная Связь // Химическая Связь // Подготовка к ЕГЭ по ХимииСкачать

Химия 8 класс — Ионная Связь // Химическая Связь  // Подготовка к ЕГЭ по Химии

Ковалентная связь. 8 класс.Скачать

Ковалентная связь. 8 класс.

Ковалентная Полярная Связь — Химическая связь // Химия 8 классСкачать

Ковалентная Полярная Связь — Химическая связь // Химия 8 класс

3. Химические связи. Гомолитический и гетеролитический разрыв. Электрофил, нуклеофил, радикалСкачать

3. Химические связи. Гомолитический и гетеролитический разрыв. Электрофил, нуклеофил, радикал

БЕЗУМНЫЙ лайфхак по Химии — Как определить Тип Химической СвязиСкачать

БЕЗУМНЫЙ лайфхак по Химии — Как определить Тип Химической Связи

Определяем тип химической связиСкачать

Определяем тип химической связи

СИГМА- ПИ- ДЕЛЬТА- СВЯЗЬСкачать

СИГМА- ПИ- ДЕЛЬТА- СВЯЗЬ

Химия | Тепловой эффект химической реакции (энтальпия)Скачать

Химия | Тепловой эффект химической реакции (энтальпия)

Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакцийСкачать

Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакций

Ковалентная связь. 2 часть. 10 класс.Скачать

Ковалентная связь. 2 часть. 10 класс.
Поделиться или сохранить к себе: