Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

Определите координаты точки N (рис. 28) в системах координат XOY и Х’О’Y’.

Видео:№976. Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.Скачать

№976. Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.

Ваш ответ

Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

решение вопроса

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Похожие вопросы

  • Все категории
  • экономические 43,405
  • гуманитарные 33,632
  • юридические 17,905
  • школьный раздел 607,990
  • разное 16,855

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Задача №322. Алгебра 7 класс Макарычев.Скачать

Задача №322. Алгебра 7 класс Макарычев.

Координаты точки пересечения двух прямых — примеры нахождения

Для того, чтобы решить геометрическую задачу методом координат, необходима точка пересечения, координаты которой используются при решении. Возникает ситуация, когда требуется искать координаты пересечения двух прямых на плоскости или определить координаты тех же прямых в пространстве. Данная статья рассматривает случаи нахождения координат точек, где пересекаются заданные прямые.

Видео:Выделение ФУНКЦИИ из уравнений прямых. Найти точку пересечения прямых, заданных уравнениямиСкачать

Выделение ФУНКЦИИ из уравнений прямых. Найти точку пересечения прямых, заданных уравнениями

Точка пересечения двух прямых – определение

Необходимо дать определение точкам пересечения двух прямых.

Раздел взаимного расположения прямых на плоскости показывает, что они могут совпадать , быть параллельными, пересекаться в одной общей точке или скрещивающимися. Две прямые, находящиеся в пространстве, называют пересекающимися, если они имеют одну общую точку.

Определение точки пересечения прямых звучит так:

Точка, в которой пересекаются две прямые, называют их точкой пересечения. Иначе говоря, что точка пересекающихся прямых и есть точка пересечения.

Рассмотрим на рисунке, приведенном ниже.

Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Нахождение координат точки пересечения двух прямых на плоскости

Перед нахождением координат точки пересечения двух прямых, необходимо рассмотреть предлагаемый ниже пример.

Если на плоскости имеется система координат О х у , то задаются две прямые a и b . Прямой a соответствует общее уравнение вида A 1 x + B 1 y + C 1 = 0 , для прямой b — A 2 x + B 2 y + C 2 = 0 . Тогда M 0 ( x 0 , y 0 ) является некоторой точкой плоскости необходимо выявить , будет ли точка М 0 являться точкой пересечения этих прямых.

Чтобы решить поставленную задачу, необходимо придерживаться определения. Тогда прямые должны пересекаться в точке, координаты которой являются решением заданных уравнений A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Значит, координаты точки пересечения подставляются во все заданные уравнения. Если они при подстановке дают верное тождество, тогда M 0 ( x 0 , y 0 ) считается их точкой пересечения.

Даны две пересекающиеся прямые 5 x — 2 y — 16 = 0 и 2 x — 5 y — 19 = 0 . Будет ли точка М 0 с координатами ( 2 , — 3 ) являться точкой пересечения.

Чтобы пересечение прямых было действительным, необходимо, чтобы координаты точки М 0 удовлетворяли уравнениям прямых. Это проверяется при помощи их подстановки. Получаем, что

5 · 2 — 2 · ( — 3 ) — 16 = 0 ⇔ 0 = 0 2 · 2 — 5 · ( — 3 ) — 19 = 0 ⇔ 0 = 0

Оба равенства верные, значит М 0 ( 2 , — 3 ) является точкой пересечения заданных прямых.

Изобразим данное решение на координатной прямой рисунка, приведенного ниже.

Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

Ответ: заданная точка с координатами ( 2 , — 3 ) будет являться точкой пересечения заданных прямых.

Пересекутся ли прямые 5 x + 3 y — 1 = 0 и 7 x — 2 y + 11 = 0 в точке M 0 ( 2 , — 3 ) ?

Для решения задачи необходимо подставить координаты точки во все уравнения. Получим, что

5 · 2 + 3 · ( — 3 ) — 1 = 0 ⇔ 0 = 0 7 · 2 — 2 · ( — 3 ) + 11 = 0 ⇔ 31 = 0

Второе равенство не является верным, значит, что заданная точка не принадлежит прямой 7 x — 2 y + 11 = 0 . Отсюда имеем, что точка М 0 не точка пересечения прямых.

Чертеж наглядно показывает, что М 0 — это не точка пересечения прямых. Они имеют общую точку с координатами ( — 1 , 2 ) .

Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

Ответ: точка с координатами ( 2 , — 3 ) не является точкой пересечения заданных прямых.

Переходим к нахождению координат точек пересечения двух прямых при помощи заданных уравнений на плоскости.

Задаются две пересекающиеся прямые a и b уравнениями вида A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 , расположенных в О х у . При обозначении точки пересечения М 0 получим, что следует продолжить поиск координат по уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 .

Из определения очевидно, что М 0 является общей точкой пересечения прямых. В этом случае ее координаты должны удовлетворять уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Иными словами это и есть решение полученной системы A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 .

Значит, для нахождения координат точки пересечения , необходимо все уравнения добавить в систему и решить ее.

Заданы две прямые x — 9 y + 14 = 0 и 5 x — 2 y — 16 = 0 на плоскости. необходимо найти их пересечение.

Данные по условию уравнения необходимо собрать в систему, после чего получим x — 9 y + 14 = 0 5 x — 2 y — 16 = 0 . Чтобы решить его, разрешается первое уравнение относительно x , подставляется выражение во второе:

x — 9 y + 14 = 0 5 x — 2 y — 16 = 0 ⇔ x = 9 y — 14 5 x — 2 y — 16 = 0 ⇔ ⇔ x = 9 y — 14 5 · 9 y — 14 — 2 y — 16 = 0 ⇔ x = 9 y — 14 43 y — 86 = 0 ⇔ ⇔ x = 9 y — 14 y = 2 ⇔ x = 9 · 2 — 14 y = 2 ⇔ x = 4 y = 2

Получившиеся числа являются координатами, которые необходимо было найти.

Ответ: M 0 ( 4 , 2 ) является точкой пересечения прямых x — 9 y + 14 = 0 и 5 x — 2 y — 16 = 0 .

Поиск координат сводится к решению системы линейных уравнений. Если по условию дан другой вид уравнения, тогда следует привести его к нормальному виду.

Определить координаты точек пересечения прямых x — 5 = y — 4 — 3 и x = 4 + 9 · λ y = 2 + λ , λ ∈ R .

Для начала необходимо привести уравнения к общему виду. Тогда получаем, что x = 4 + 9 · λ y = 2 + λ , λ ∈ R преобразуется таким образом:

x = 4 + 9 · λ y = 2 + λ ⇔ λ = x — 4 9 λ = y — 2 1 ⇔ x — 4 9 = y — 2 1 ⇔ ⇔ 1 · ( x — 4 ) = 9 · ( y — 2 ) ⇔ x — 9 y + 14 = 0

После чего беремся за уравнение канонического вида x — 5 = y — 4 — 3 и преобразуем. Получаем, что

x — 5 = y — 4 — 3 ⇔ — 3 · x = — 5 · y — 4 ⇔ 3 x — 5 y + 20 = 0

Отсюда имеем, что координаты – это точка пересечения

x — 9 y + 14 = 0 3 x — 5 y + 20 = 0 ⇔ x — 9 y = — 14 3 x — 5 y = — 20

Применим метод Крамера для нахождения координат:

∆ = 1 — 9 3 — 5 = 1 · ( — 5 ) — ( — 9 ) · 3 = 22 ∆ x = — 14 — 9 — 20 — 5 = — 14 · ( — 5 ) — ( — 9 ) · ( — 20 ) = — 110 ⇒ x = ∆ x ∆ = — 110 22 = — 5 ∆ y = 1 — 14 3 — 20 = 1 · ( — 20 ) — ( — 14 ) · 3 = 22 ⇒ y = ∆ y ∆ = 22 22 = 1

Ответ: M 0 ( — 5 , 1 ) .

Имеется еще способ для нахождения координат точки пересечения прямых, находящихся на плоскости. Он применим, когда одна из прямых задается параметрическими уравнениями, имеющими вид x = x 1 + a x · λ y = y 1 + a y · λ , λ ∈ R . Тогда вместо значения x подставляется x = x 1 + a x · λ и y = y 1 + a y · λ , где получим λ = λ 0 , соответствующее точке пересечения, имеющей координаты x 1 + a x · λ 0 , y 1 + a y · λ 0 .

Определить координаты точки пересечения прямой x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x — 5 = y — 4 — 3 .

Необходимо выполнить подстановку в x — 5 = y — 4 — 3 выражением x = 4 + 9 · λ , y = 2 + λ , тогда получим:

4 + 9 · λ — 5 = 2 + λ — 4 — 3

При решении получаем, что λ = — 1 . Отсюда следует, что имеется точка пересечения между прямыми x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x — 5 = y — 4 — 3 . Для вычисления координат необходимо подставить выражение λ = — 1 в параметрическое уравнение. Тогда получаем, что x = 4 + 9 · ( — 1 ) y = 2 + ( — 1 ) ⇔ x = — 5 y = 1 .

Ответ: M 0 ( — 5 , 1 ) .

Для полного понимания темы, необходимо знать некоторые нюансы.

Предварительно необходимо понять расположение прямых. При их пересечении мы найдем координаты, в других случаях решения существовать не будет. Чтобы не делать эту проверку, можно составлять систему вида A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 + C 2 = 0 При наличии решения делаем вывод о том, что прямые пересекаются. Если решение отсутствует, то они параллельны. Когда система имеет бесконечное множество решений, тогда говорят, что они совпадают.

Даны прямые x 3 + y — 4 = 1 и y = 4 3 x — 4 . Определить, имеют ли они общую точку.

Упрощая заданные уравнения, получаем 1 3 x — 1 4 y — 1 = 0 и 4 3 x — y — 4 = 0 .

Следует собрать уравнения в систему для последующего решения:

1 3 x — 1 4 y — 1 = 0 1 3 x — y — 4 = 0 ⇔ 1 3 x — 1 4 y = 1 4 3 x — y = 4

Отсюда видно, что уравнения выражаются друг через друга, тогда получим бесконечное множество решений. Тогда уравнения x 3 + y — 4 = 1 и y = 4 3 x — 4 определяют одну и ту же прямую. Поэтому нет точек пересечения.

Ответ: заданные уравнения определяют одну и ту же прямую.

Найти координаты точки пересекающихся прямых 2 x + ( 2 — 3 ) y + 7 = 0 и 2 3 + 2 x — 7 y — 1 = 0 .

По условию возможно такое, прямые не будут пересекаться. Необходимо составить систему уравнений и решать. Для решения необходимо использовать метод Гаусса, так как с его помощью есть возможность проверить уравнение на совместимость. Получаем систему вида:

2 x + ( 2 — 3 ) y + 7 = 0 2 ( 3 + 2 ) x — 7 y — 1 = 0 ⇔ 2 x + ( 2 — 3 ) y = — 7 2 ( 3 + 2 ) x — 7 y = 1 ⇔ ⇔ 2 x + 2 — 3 y = — 7 2 ( 3 + 2 ) x — 7 y + ( 2 x + ( 2 — 3 ) y ) · ( — ( 3 + 2 ) ) = 1 + — 7 · ( — ( 3 + 2 ) ) ⇔ ⇔ 2 x + ( 2 — 3 ) y = — 7 0 = 22 — 7 2

Получили неверное равенство, значит система не имеет решений. Делаем вывод, что прямые являются параллельными. Точек пересечения нет.

Второй способ решения.

Для начала нужно определить наличие пересечения прямых.

n 1 → = ( 2 , 2 — 3 ) является нормальным вектором прямой 2 x + ( 2 — 3 ) y + 7 = 0 , тогда вектор n 2 → = ( 2 ( 3 + 2 ) , — 7 — нормальный вектор для прямой 2 3 + 2 x — 7 y — 1 = 0 .

Необходимо выполнить проверку коллинеарности векторов n 1 → = ( 2 , 2 — 3 ) и n 2 → = ( 2 ( 3 + 2 ) , — 7 ) . Получим равенство вида 2 2 ( 3 + 2 ) = 2 — 3 — 7 . Оно верное, потому как 2 2 3 + 2 — 2 — 3 — 7 = 7 + 2 — 3 ( 3 + 2 ) 7 ( 3 + 2 ) = 7 — 7 7 ( 3 + 2 ) = 0 . Отсюда следует, что векторы коллинеарны. Значит, прямые являются параллельными и не имеют точек пересечения.

Ответ: точек пересечения нет, прямые параллельны.

Найти координаты пересечения заданных прямых 2 x — 1 = 0 и y = 5 4 x — 2 .

Для решения составляем систему уравнений. Получаем

2 x — 1 = 0 5 4 x — y — 2 = 0 ⇔ 2 x = 1 5 4 x — y = 2

Найдем определитель основной матрицы. Для этого 2 0 5 4 — 1 = 2 · ( — 1 ) — 0 · 5 4 = — 2 . Так как он не равен нулю, система имеет 1 решение. Отсюда следует, что прямые пересекаются. Решим систему для нахождения координат точек пересечения:

2 x = 1 5 4 x — y = 2 ⇔ x = 1 2 4 5 x — y = 2 ⇔ x = 1 2 5 4 · 1 2 — y = 2 ⇔ x = 1 2 y = — 11 8

Получили, что точка пересечения заданных прямых имеет координаты M 0 ( 1 2 , — 11 8 ) .

Ответ: M 0 ( 1 2 , — 11 8 ) .

Видео:Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Нахождения координат точки пересечения двух прямых в пространстве

Таким же образом находятся точки пересечения прямых пространства.

Когда заданы прямые a и b в координатной плоскости О х у z уравнениями пересекающихся плоскостей, то имеется прямая a , которая может быть определена при помощи заданной системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 1 = 0 а прямая b — A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 .

Когда точка М 0 является точкой пересечения прямых, тогда ее координаты должны быть решениями обоих уравнений. Получим линейные уравнения в системе:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0

Рассмотрим подобные задания на примерах.

Найти координаты точки пересечения заданных прямых x — 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0

Составляем систему x — 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0 и решим ее. Чтобы найти координаты, необходимо решать через матрицу. Тогда получим основную матрицу вида A = 1 0 0 0 1 2 3 2 0 4 0 — 2 и расширенную T = 1 0 0 1 0 1 2 — 3 4 0 — 2 4 . Определяем ранг матрицы по Гауссу.

1 = 1 ≠ 0 , 1 0 0 1 = 1 ≠ 0 , 1 0 0 0 1 2 3 2 0 = — 4 ≠ 0 , 1 0 0 1 0 1 2 — 3 3 2 0 — 3 4 0 — 2 4 = 0

Отсюда следует, что ранг расширенной матрицы имеет значение 3 . Тогда система уравнений x — 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x — 27 — 4 = 0 в результате дает только одно решение.

Базисный минор имеет определитель 1 0 0 0 1 2 3 2 0 = — 4 ≠ 0 , тогда последнее уравнение не подходит. Получим, что x — 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0 ⇔ x = 1 y + 2 z = — 3 3 x + 2 y — 3 . Решение системы x = 1 y + 2 z = — 3 3 x + 2 y = — 3 ⇔ x = 1 y + 2 z = — 3 3 · 1 + 2 y = — 3 ⇔ x = 1 y + 2 z = — 3 y = — 3 ⇔ ⇔ x = 1 — 3 + 2 z = — 3 y = — 3 ⇔ x = 1 z = 0 y = — 3 .

Значит, имеем, что точка пересечения x — 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0 имеет координаты ( 1 , — 3 , 0 ) .

Ответ: ( 1 , — 3 , 0 ) .

Система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 имеет только одно решение. Значит, прямые a и b пересекаются.

В остальных случаях уравнение не имеет решения, то есть и общих точек тоже. То есть невозможно найти точку с координатами, так как ее нет.

Поэтому система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 решается методом Гаусса. При ее несовместимости прямые не являются пересекающимися. Если решений бесконечное множество, то они совпадают.

Можно произвести решение при помощи вычисления основного и расширенного ранга матрицы, после чего применить теорему Кронекера-Капелли. Получим одно, множество или полное отсутствие решений.

Заданы уравнения прямых x + 2 y — 3 z — 4 = 0 2 x — y + 5 = 0 и x — 3 z = 0 3 x — 2 y + 2 z — 1 = 0 . Найти точку пересечения.

Для начала составим систему уравнений. Получим, что x + 2 y — 3 z — 4 = 0 2 x — y + 5 = 0 x — 3 z = 0 3 x — 2 y + 2 z — 1 = 0 . решаем ее методом Гаусса:

1 2 — 3 4 2 — 1 0 — 5 1 0 — 3 0 3 — 2 2 1

1 2 — 3 4 0 — 5 6 — 13 0 — 2 0 — 4 0 — 8 11 — 11

1 2 — 3 4 0 — 5 6 — 13 0 0 — 12 5 6 5 0 0 7 5 — 159 5

1 2 — 3 4 0 — 5 6 — 13 0 0 — 12 5 6 5 0 0 0 311 10

Очевидно, что система не имеет решений, значит прямые не пересекаются. Точки пересечения нет.

Ответ: нет точки пересечения.

Если прямые заданы при помощи кононических или параметрических уравнений, нужно привести к виду уравнений пересекающихся плоскостей, после чего найти координаты.

Заданы две прямые x = — 3 — λ y = — 3 · λ z = — 2 + 3 · λ , λ ∈ R и x 2 = y — 3 0 = z 5 в О х у z . Найти точку пересечения.

Задаем прямые уравнениями двух пересекающихся плоскостей. Получаем, что

x = — 3 — λ y = — 3 · λ z = — 2 + 3 · λ ⇔ λ = x + 3 — 1 λ = y — 3 λ = z + 2 3 ⇔ x + 3 — 1 = y — 3 = z + 2 3 ⇔ ⇔ x + 3 — 1 = y — 3 x + 3 — 1 = z + 2 3 ⇔ 3 x — y + 9 = 0 3 x + z + 11 = 0 x 2 = y — 3 0 = z 5 ⇔ y — 3 = 0 x 2 = z 5 ⇔ y — 3 = 0 5 x — 2 z = 0

Находим координаты 3 x — y + 9 = 0 3 x + z + 11 = 0 y — 3 = 0 5 x — 2 z = 0 , для этого посчитаем ранги матрицы. Ранг матрицы равен 3 , а базисный минор 3 — 1 0 3 0 1 0 1 0 = — 3 ≠ 0 , значит, что из системы необходимо исключить последнее уравнение. Получаем, что

3 x — y + 9 = 0 3 x + z + 11 = 0 y — 3 = 0 5 x — 2 z = 0 ⇔ 3 x — y + 9 = 0 3 x + z + 11 = 0 y — 3 = 0

Решим систему методом Крамер. Получаем, что x = — 2 y = 3 z = — 5 . Отсюда получаем, что пересечение заданных прямых дает точку с координатами ( — 2 , 3 , — 5 ) .

Видео:Не выполняя построения графиков, найдите координаты точки пересечения прямых. Алгебра 7 класс.Скачать

Не выполняя построения графиков, найдите координаты точки пересечения прямых. Алгебра 7 класс.

Как найти координаты точки?

Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

О чем эта статья:

3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ

Видео:Как найти абсциссу точки пересечения двух прямых?Скачать

Как найти абсциссу точки пересечения двух прямых?

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;

Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Видео:16. Показать что прямые пересекаются и найти точку их пересечения в пространствеСкачать

16. Показать что прямые пересекаются и найти точку их пересечения в пространстве

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
    Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
    Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
    Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
    Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).
    Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

Видео:Точки пересечения графиков линейных функций. 7 класс.ОбразовательныйСкачать

Точки пересечения графиков линейных функций. 7 класс.Образовательный

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.
    Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.
    Определите координаты точки пересечения прямых рис 28 запишите соответствующую систему уравнений

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

📹 Видео

Найти координаты точки пересечения прямыхСкачать

Найти координаты точки пересечения прямых

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Алгебра 7 класс. 12 октября. Находим точку пересечения графиков!Скачать

Алгебра 7 класс. 12 октября. Находим точку пересечения графиков!

Алгебра 7 класс. Как определить координаты точек пересечения графиков двух функций (5 урок из 5)Скачать

Алгебра 7 класс. Как определить координаты точек пересечения графиков двух функций (5 урок из 5)

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Нахождение координат точек пересечения графика функции с осями координатСкачать

Нахождение координат точек пересечения графика функции с осями координат

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Уравнение прямой.Скачать

Уравнение прямой.
Поделиться или сохранить к себе: