Калькулятор использует методы регрессии для аппроксимации функции одной переменной.
Данный калькулятор по введенным данным строит несколько моделей регрессии: линейную, квадратичную, кубическую, степенную, логарифмическую, гиперболическую, показательную, экспоненциальную. Результаты можно сравнить между собой по корреляции, средней ошибке аппроксимации и наглядно на графике. Теория и формулы регрессий под калькулятором.
Если не ввести значения x, калькулятор примет, что значение x меняется от 0 с шагом 1.
- Аппроксимация функции одной переменной
- Линейная регрессия
- Квадратичная регрессия
- Кубическая регрессия
- Степенная регрессия
- Показательная регрессия
- Гиперболическая регрессия
- Логарифмическая регрессия
- Экспоненциальная регрессия
- Вывод формул
- Расчет кривой второго порядка на плоскости по точкам
- ИНВАРИАНТЫ И СВОДНАЯ ТАБЛИЦА
- СИНТАКСИС
- ПРИМЕРЫ
- Онлайн калькулятор. Уравнение прямой проходящей через две точки
- Найти уравнение прямой
- Ввод данных в калькулятор для составления уравнения прямой
- Дополнительные возможности калькулятора для составления уравнения прямой
- Теория. Уравнение прямой.
- 📹 Видео
Аппроксимация функции одной переменной
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Линейная регрессия
Коэффициент линейной парной корреляции:
Средняя ошибка аппроксимации:
Видео:Составляем уравнение прямой по точкамСкачать
Квадратичная регрессия
Система уравнений для нахождения коэффициентов a, b и c:
Коэффициент корреляции:
,
где
Средняя ошибка аппроксимации:
Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать
Кубическая регрессия
Система уравнений для нахождения коэффициентов a, b, c и d:
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать
Степенная регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Показательная регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.
Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать
Гиперболическая регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.
Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Логарифмическая регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.
Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Экспоненциальная регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Вывод формул
Сначала сформулируем задачу:
Пусть у нас есть неизвестная функция y=f(x), заданная табличными значениями (например, полученными в результате опытных измерений).
Нам необходимо найти функцию заданного вида (линейную, квадратичную и т. п.) y=F(x), которая в соответствующих точках принимает значения, как можно более близкие к табличным.
На практике вид функции чаще всего определяют путем сравнения расположения точек с графиками известных функций.
Полученная формула y=F(x), которую называют эмпирической формулой, или уравнением регрессии y на x, или приближающей (аппроксимирующей) функцией, позволяет находить значения f(x) для нетабличных значений x, сглаживая результаты измерений величины y.
Для того, чтобы получить параметры функции F, используется метод наименьших квадратов. В этом методе в качестве критерия близости приближающей функции к совокупности точек используется суммы квадратов разностей значений табличных значений y и теоретических, рассчитанных по уравнению регрессии.
Таким образом, нам требуется найти функцию F, такую, чтобы сумма квадратов S была наименьшей:
Рассмотрим решение этой задачи на примере получения линейной регрессии F=ax+b.
S является функцией двух переменных, a и b. Чтобы найти ее минимум, используем условие экстремума, а именно, равенства нулю частных производных.
Используя формулу производной сложной функции, получим следующую систему уравнений:
Для функции вида частные производные равны:
,
Подставив производные, получим:
Откуда, выразив a и b, можно получить формулы для коэффициентов линейной регрессии, приведенные выше.
Аналогичным образом выводятся формулы для остальных видов регрессий.
Видео:Касательная к графику функции в точке. 10 класс.Скачать
Расчет кривой второго порядка на плоскости по точкам
Элементы кривой второго порядка или координаты |
Уравнения Ax^2+By^2+Cxy+Dx+Ey+F=0 |
A= |
B= |
C= |
D= |
E= |
F= |
Полученная формула | ||||||||||||||||||
Коэффициенты через пробел Калькулятор предназначен для расчета и создания уравнения кривых второго порядка на декартовой плоскости по нескольким точкам, от двух до пяти. Не является секретом то, что уравнение кривой второго порядка может быть представлена формулой Мы будем использовать чуть измененную формулу, разделив все коэффициенты на a6 отсюда видно, что кривую второго порядка можно однозначно определить по пяти точкам. Кривая второго порядка при различных коэффициентах может превращатся в следующие «типы»: — пара пересекающихся прямых — пара паралельных несовпадающих прямых — пары совпадающих прямых — линии, вырождающиеся в точку — «нулевые линии», то есть «линии», вовсе не имеющие точек Если Вам интересны формулы при которых получаются все эти типы, то пожалуйста — пара пересекающихся прямых — пара параллельных прямых — пара совпадающих прямых Этот сервис позволяет Вам по заданным точкам определить, какую же кривую второго порядка провести через эти точки. Кроме этого, Вы увидите все основные параметры полученной кривой второго порядка. От Вас лишь понадобится предоставить боту от двух до пяти декартовых координат, что бы бот мог решить эту задачу. ИНВАРИАНТЫ И СВОДНАЯ ТАБЛИЦАЛюбая кривая второго порядка характеризуется тремя инвариантами, имеющими вид И одним семиинвариантом если Вам интересно, откуда они появились, то рекомендуем прочитать книгу «Аналитическая геометрия — Делоне» Характеристическое уравнение кривой второго порядка: Таким образом сводная таблица имеет вид
Анализируя написанные онлайн калькуляторы по этой теме, нашел интересную «особенность». Попробовав рассчитать по трем точкам кривую второго порядка, зная что эти точки принадлежат окружности, я с завидным постоянством получал ответ, что графиком(формой)полученного уравнения кривой является эллипс. Нет формально, конечно стоит признать что окружность является частным примером эллипса, но ведь можно пойти дальше и признать что и эллипс и гипербола и парабола, являются лишь частным примером кривой второго порядка общего вида, и в ответах таких калькуляторов выдавать ответ пользователю «вы получили уравнение второго порядка» и всё. не соврали же. Такое сверхлегкое трактование и смешение определений геометрических фигур, никак не способствует пониманию и сути решаемых задач. Это как в анекдоте «А теперь нарисуем квадрат со сторонами 3 на 4″(с) И не поймешь то ли рисовать квадрат, то ли прямоугольник. Видео:Математика без Ху!ни. Уравнение касательной.Скачать СИНТАКСИСJabber: kp2 Строкой является список чисел разделенное пробелами. А каждое «число» представляет собой абсциссу и ординату точки разделенные двоеточием. Координат или их «замен» должно быть ровно шесть То есть если мы знаем пять координат то 6 элементом у нас будет единица. В вкладке Пример Вы сможете увидеть решения некоторые. Если в строке есть числа не имеющие : то это означает что это неизменяемый соответствующий коэффициент кривой второго порядка. Например если в строке стоит ноль на первой позиции строки то это означает что A1=0 Бот вычисляет численные параметры кривой. Если же Вам надо нарисовать кривую второго порядка на плоскости, просьба использовать программу GeoGebra и материал Построить график функции c помощью GeoGebra Видео:Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать ПРИМЕРЫНачнем сразу с проверочного примера Вообще, убедимся правильно ли считает бот? Итак, есть у нас функция x*x+3x-11=y определим значения при x=1,2,3,4,5 значения получились такие y=-7,-1,7,17,29 и зададим эти точки в качестве исходных пишем kp2 1:-7 2:-1 3:7 4:17 5:29 в результате получаем следующее:
На первый взгляд получилось далеко не то, что должно получится. Но если мы уберем нулевые коэффициенты, и разделим все на 0.09091 то результат будет такой то есть Что и требовалось доказать в качестве правильности расчетов нашего бота. Теперь пусть у нас есть всего лишь три точки С координатами x=1,2,3 и y=-7,-1,7 Логично, что это тоже самое уравнение параболы что мы разбирали в первом примере. НО! при трех точках такое решение не единственное. Давайте попробуем задать боту всего три координаты и скажем ему какого вида уравнение мы хотим получить.
Это частное уравнение кривой второго порядка в котором коэффициенты а1 и а5 равны нулю Скажем об этом боту kp2 0 1:-7 2:-1 3:7 0 1 где 0- показывает какие коэффициенты нам НЕ надо учитывать, а 1 — это постоянный коэффициент, то есть его находить нет необходимости. Он известен. Видим что не учитываем 1 и 5 коэффициент. Кривая второго порядка a1*x*x+a2*y*y+a3*x*y+a4*x+a5*y+a6 = 0 Видео:Уравнение окружности (1)Скачать Онлайн калькулятор. Уравнение прямой проходящей через две точкиЭтот онлайн калькулятор позволит вам очень просто найти параметрическое и каноническое уравнение прямой проходящей через две точки. Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения прямой и закрепить пройденный материал. Видео:Математика без Ху!ни. Нахождение асимптот, построение графика функции.Скачать Найти уравнение прямойВыберите необходимую вам размерность: Введите координаты точек. Ввод данных в калькулятор для составления уравнения прямойВ онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел. Дополнительные возможности калькулятора для составления уравнения прямой
Теория. Уравнение прямой.Прямая — один из базовых элементов геометрии. Используя уравнения прямых можно существенно упростить решение многих задач. Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел. Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список! Добро пожаловать на OnlineMSchool. 📹 Видео10 класс, 43 урок, Уравнение касательной к графику функцииСкачать Параллельные прямые | Математика | TutorOnlineСкачать Решение системы линейных уравнений графическим методом. 7 класс.Скачать Записать уравнение прямой параллельной или перпендикулярной данной.Скачать Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать Уравнение прямой по двум точкамСкачать |