- Немного теории
- Приведение к каноническому виду
- Решение ДУ в ЧП
- Разные задачи на исследование ДУ в ЧП
- Помощь с решением ДУ в ЧП
- Приведение к каноническому виду линейных уравнений с частными производными второго порядка
- Дифференциальные уравнения в частных производных с примерами решения и образцами выполнения
- Линейные дифференциальные уравнения с частными производными. Свойства их решений
- Классификация линейных дифференциальных уравнений второго порядка с двумя независимыми переменными
- Постановка основных задач для линейных дифференциальных уравнений второго порядка
- 🔥 Видео
Видео:Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать
Немного теории
Дифференциальным уравнением с частными производными (ДУ с ЧП) называется уравнение относительно неизвестной функции нескольких переменных (ФНП) и ее частных производных. Наивысший порядок частных производных (существенно входящих в уравнение) называется порядком этого уравнения.
ДУ с ЧП называется линейным (ЛДУ с ЧП), если неизвестная функция и ее производные входят в это ДУ линейно (в первой степени).
В этом разделе вы найдете подробно решенные задачи по темам: классификация и приведение к каноническому виду ДУ с ЧП второго порядка с двумя переменными, определение типа уравнения, решение уравнений и систем ДУ в ЧП.
ДУ с ЧП находят широкое применение в прикладных науках: квантовая механика, электродинамика, термодинамика, теория теплои массопереноса и др. при математическом описании и моделировании различных физических процессов. Поэтому такие уравнения изучаются под общим названием уравнений математической физики (примеры решений 16 задач).
Видео:Приводим диффур в частных производных к каноническому виду | УМФ (УрЧП) | КАК РЕШАТЬ?Скачать
Приведение к каноническому виду
Задача 1. Привести к каноническому виду уравнение
Задача 2. Привести уравнение к каноническому виду.
Задача 3. Найти общее решение уравнения, приведя его к каноническому виду:
Видео:Приведение линейного уравнения в частных производных c постоянными коэфф--ми к каноническому виду.Скачать
Решение ДУ в ЧП
Задача 4. Решить уравнение Пфаффа
$$ z^2 dx +zdy +(3zx +2y)dz=0. $$
Задача 5. Решить задачу Коши для уравнения в частных производных
$$ u_-2Delta u =(x^2+y^2+z^2)t; quad u(t=0)=xyz, u_t(t=0)=x-y. $$
Задача 6. Найти общее решение уравнения в частных производных
Задача 7. Найти общее решение уравнения в частных производных первого порядка.
$$ xy u_x +(x-2u)u_y = yu. $$
Задача 8. Найти решение задачи Коши для уравнения в частных производных
$$ y u_x -xy u_y=2xu, quad u(x+y=2)=1/y. $$
Задача 9. Решить систему дифференциальных уравнений в частных производных
Видео:Дифференциальные уравнения в частных производных. Привидение к каноническому виду.Скачать
Разные задачи на исследование ДУ в ЧП
Задача 10. Найти поверхность, удовлетворяющую данному уравнению и проходящую через данную линию
Задача 11. Найти области гиперболичности, эллиптичности и параболичности уравнения и исследовать их зависимость от $l$, где $l$ – числовой параметр.
Задача 12. Найти функцию, гармоническую внутри круга радиуса $R$ c центром в начале координат и такую, что
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать
Помощь с решением ДУ в ЧП
Если вам нужна помощь с решением задач и контрольных по дифференциальным уравнениям (и другим разделам математического анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.
Видео:2. Приведение уравнений второго порядка к каноническому видуСкачать
Приведение к каноническому виду линейных уравнений с частными производными второго порядка
Федеральное агентство по образованию
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Институт математики, экономики и информатики
Кафедра дифференциальных и интегральных уравнений
ПРИВЕДЕНИЕ К КАНОНИЧЕСКОМУ ВИДУ ЛИНЕЙНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА
Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными …………………………………………………………………………
1.1. Необходимый теоретический материал………………………..
1.2. Пример выполнения задачи1 (приведение к
каноническому виду уравнений гиперболического типа) .
1.3. Пример выполнения задачи 2 (приведение к
каноническому виду уравнений параболического типа)
1.4. Пример выполнения задачи 3 (приведение к
каноническому виду уравнений эллиптического типа) ..
1.5. Задачи для самостоятельного решения ………………….….
Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2.1. Необходимый теоретический материал …………………..
2.2. Пример выполнения задачи 4
2.3. Задачи для самостоятельного решения ……………………..
В настоящих методических указаниях изложен теоретический материал и на конкретных примерах разобрано приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными для уравнений гиперболического, эллиптического и параболического типов.
Методические указания предназначены для студентов математических специальностей очной и заочной формы обучения.
§1. Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными.
Задача. Определить тип уравнения
(1)
и привести его к каноническому виду.
1.1. Необходимый теоретический материал.
I. Тип уравнения (1) определяется знаком выражения :
· если в некоторой точке, то уравнение (1) называется уравнением гиперболического типа в этой точке;
· если в некоторой точке, то уравнение (1) называется уравнением эллиптического типа в этой точке;
· если в некоторой точке, то уравнение (1) называется уравнением параболического типа в этой точке.
Уравнение (1) будет являться уравнением гиперболического, эллиптического, параболического типа в области D, если оно гиперболично, эллиптично, параболично в каждой точке этой области.
Уравнение (1) может менять свой тип при переходе из одной точки (области) в другую. Например, уравнение является уравнением эллиптического типа в точках ; параболического типа в точках ; и гиперболического типа в точках .
II. Чтобы привести уравнение к канонического виду, необходимо:
1. Определить коэффициенты ;
2. Вычислить выражение ;
3. Сделать вывод о типе уравнения (1) (в зависимости от знака выражения );
4. Записать уравнение характеристик:
; (2)
5. Решить уравнение (2). Для этого:
а) разрешить уравнение (2) как квадратное уравнение относительно dy:
; (3)
б) найти общие интегралы уравнений (3) (характеристики уравнения (1)):
· (4)
в случае уравнения гиперболического типа;
· , (5)
в случае уравнения параболического типа;
· , (6)
в случае уравнения эллиптического типа.
6. Ввести новые (характеристические) переменные и :
· в случае уравнения гиперболического типа в качестве и берут общие интегралы (4) уравнений (3), т. е.
· в случае уравнения параболического типа в качестве берут общий интеграл (5) уравнения (3), т. е. , в качестве берут произвольную, дважды дифференцируемую функцию , не выражающуюся через , т. е. ;
· в случае уравнения эллиптического типа в качестве и берут вещественную и мнимую часть любого из общих интегралов (6) уравнений (3):
7. Пересчитать все производные, входящие в уравнение (1), используя правило дифференцирования сложной функции:
,
,
, (7)
,
.
8. Подставить найденные производные в исходное уравнение (1) и привести подобные слагаемые. В результате уравнение (1) примет один из следующих видов:
· в случае уравнения гиперболического типа:
;
· в случае уравнения параболического типа:
;
· в случае уравнения эллиптического типа:
.
1.2. Пример выполнения задачи 1.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты :
2. Вычислим выражение :
.
3. уравнение гиперболического типа во всей плоскости XOY.
4. Запишем уравнение характеристик:
. (9)
5. Решим уравнение (9). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy: ;
;
(10)
б) найдём общие интегралы уравнений (10) (характеристики уравнения (9)):
6. Введём характеристические переменные:
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (8) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на -100 (коэффициент при ):
Ответ. Уравнение (8) является уравнением гиперболического типа на всей плоскости XOY. Канонический вид
где
1.3. Пример выполнения задачи 2.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты . В нашем примере они постоянны:
2. Вычислим выражение :
.
3. уравнение параболического типа во всей плоскости XOY.
4. Запишем уравнение характеристик:
. (12)
5. Решим уравнение (12). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy. Однако в этом случае левая часть уравнения является полным квадратом:
;
(13)
б) имеем только одно уравнение характеристик (13). Найдём его общий интеграл (уравнения параболического типа имеют только одно семейство вещественных характеристик):
6. Введём характеристические переменные: одну из переменных вводим как и ранее
а в качестве берут произвольную, дважды дифференцируемую функцию, не выражающуюся через , пусть
;
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (11) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Функцию, стоящую в правой части уравнения (11) необходимо также выразить через характеристические переменные.
После деления на 25 (коэффициент при ):
Ответ. Уравнение (11) является уравнением параболического типа на всей плоскости XOY. Канонический вид
где
1.4. Пример выполнения задачи 3.
Определить тип уравнения
(14)
и привести его к каноническому виду.
1. Определим коэффициенты :
2. Вычислим выражение :
.
3. уравнение эллиптического типа во всей плоскости XOY.
4. Запишем уравнение характеристик:
. (15)
5. Решим уравнение (15). Для этого:
а) разрешаем уравнение (15) как квадратное уравнение относительно dy: ; (16)
б) уравнения (16) – это пара комплексно-сопряженных уравнений. Они имеют пару комплексно-сопряженных общих интегралов. (Уравнения эллиптического типа не имеют вещественных характеристик)
(17)
6. Введём характеристические переменные как вещественную и мнимую части одного из общих интегралов (17):
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (14) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на 4 (коэффициент при и ):
Ответ. Уравнение (14) является уравнением эллиптического типа на всей плоскости XOY. Канонический вид
где
1.5. Задачи для самостоятельного решения.
Определить тип уравнения и привести его к каноническому виду.
.
.
.
.
.
.
.
.
.
.
Определить тип уравнения и привести его к каноническому виду.
Определить тип уравнения и привести его к каноническому виду.
§2. Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2. 1. Необходимый теоретический материал
В самом общем виде линейное уравнение с частными производными второго порядка с двумя независимыми переменными имеет вид
(1)
Преобразованием независимых переменных группа старших производных уравнения может быть упрощена. Уравнение (1) приводится к одному из следующих видов
· в случае уравнения гиперболического типа:
; (11)
· в случае уравнения параболического типа:
; (12)
· в случае уравнения эллиптического типа:
. (13)
Если коэффициенты исходного уравнения постоянны, то для дальнейшего упрощения уравнения любого типа нужно сделать замену неизвестной функции
, (14)
где - новая неизвестная функция, - параметры, подлежащие определению. Такая замена не «испортит» канонического вида, но при этом позволит подобрать параметры так, чтобы из трех слагаемых группы младших производных в уравнении осталось только одно. Уравнения гиперболического, параболического и эллиптического типов соответственно примут вид
;
;
.
Чтобы реализовать замену (14) в уравнениях (11), (12), (13), необходимо пересчитать все производные, входящие в эти уравнения по формулам
(15)
Подробно рассмотрим этот процесс на примере уравнения гиперболического типа, т. е. уравнения (11). Пересчитаем производные, входящие в это уравнение, используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (11). Собирая подобные слагаемые, получим
. (16)
В уравнении (16) приравняем к нулю коэффициенты при и
Откуда Подставив эти значения параметров в уравнение (16) и разделив его на , придем к уравнению
,
где .
2.2. Пример выполнения задачи 4
к каноническому виду и упростить группу младших производных.
9. Определим коэффициенты :
10. Вычислим выражение :
.
11. уравнение эллиптического типа во всей плоскости XOY.
12. Запишем уравнение характеристик:
. (18)
5. Решим уравнение (18). Для этого:
а) разрешаем уравнение (18) как квадратное уравнение относительно dy: ;
; (19)
б) найдём общие интегралы уравнений (19) (характеристики уравнения (17)):
6. Введём характеристические переменные:
13. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (17) при соответствующих производных.
14. Собирая подобные слагаемые, получим:
(20)
Теперь с помощью замены неизвестной функции (14)
упростим группу младших производных.
Пересчитаем производные, входящие в уравнение (20), используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (20). Собирая подобные слагаемые, получим
. (21)
В уравнении (21) приравняем к нулю коэффициенты при и
Откуда Подставив эти значения параметров в уравнение (21) и разделив его на , придем к уравнению
.
Ответ. Уравнение (20) является уравнением эллиптического типа на всей плоскости XOY. Его канонический вид
,
где .
2.3. Задачи для самостоятельного решения
Задача 4. Привести уравнения к каноническому виду и упростить группу младших производных.
.
.
.
.
.
.
.
.
.
.
Видео:Определяем тип ДУ 1Скачать
Дифференциальные уравнения в частных производных с примерами решения и образцами выполнения
Дифференциальным уравнением с частными производными называется уравнение вида
(1)
связывающее независимые переменные x1, х2, … , хn искомую функцию и = и(х1, х2,…, хn) и ее частные производные (наличие хотя бы одной производной обязательно). Здесь ki,k2,… ,кn — неотрицательные целые числа, такие, что к1 + к2 + … + кп = т.
Порядком дифференциального уравнения называется наивысший порядок входящие в уравнение частных производных. Так, если х, у — независимые переменные, и = и(х, у) — искомая функция, то
— дифференциальное уравнение 1-го порядка;
— дифференциальные уравнения 2-го порядка.
Для упрощения записи пользуются также следующими обозначениями:
Пусть имеем дифференциальное уравнение с частными производными (1) порядка т. Обозначим через С m (D) множество функций, непрерывных в области D вместе со всеми производными до порядка m включительно.
Определение:
Решением дифференциального уравнения (1) в некоторой области D изменения независимых переменных x1, x2…xn,. называется всякая функция и = и(х1, х2,…, xп) ∈ С m (D) такая, что подстановка этой функции и ее производных в уравнение (1) обращает последнее в тождество по x1, x2, …., хп в области D.
Пример:
Найти решение и = и(х,у) уравнения
Равенство (2) означает, что искомая функция и не зависит опт х, но может быть любой функцией от у,
u = φ(y). (3)
Таким образом, решение (3) уравнения (2) содержит одну произвольную функцию. Это — общее решение уравнения (2).
Приме:
Найти решение u = u(z, у) уравнения
Положим = о. Тогда уравнение (4) примет вид = 0. Его общим решением будет произвольная функция v = w(у). Поскольку v= приходим к уравнению = w(у). Интегрируя по у (считая х параметром), получим
где g(x) — произвольная функция. Так как w(у) — произвольная функция, то и интеграл от нее также является произвольной функцией; обозначим его через f(у). В результате получим решение уравнения (4) в виде
u(x, y) = f(y) + g(x) (5)
произвольные дифференцируемые функции).
Решение (5) уравнения с частными производными 2-го порядка (4) содержит уже две произвольные функции. Его называют общим решением уравнения (4), так как всякое другое решение уравнения (4) может быть получено из (5) подходящим выбором функций f и g.
Мы видим, таким образом, что уравнения с частными производными имеют целые семейства решений. Однако существуют уравнения с частными производными, множества решений которых весьма узки и, в некоторых случаях, да же пусты.
Пример:
Множество действительных решений уравнения
исчерпывается функцией u(x, y) = const, а уравнение
вовсе не имеет действительных решений.
Мы не ставим пока вопрос об отыскании частных решений. Позже будет выяснено, какие дополнительные условия нужно задать, чтобы с их помощью можно было выделить частное решение, т.е. функцию, удовлетворяющую как дифференциальному уравнению, так и этим дополнительным условиям.
Видео:Уравнения в частных производных первого порядка| poporyadku.schoolСкачать
Линейные дифференциальные уравнения с частными производными. Свойства их решений
Уравнение с частными производными называется линейным, если оно линейно относительно искомой функции и всех ее производных, входящих в уравнение; в противном случае уравнение называется нелинейным.
Пример:
— линейное уравнение; уравнения
Линейное дифференциальное уравнение 2-го порядка для функции двух независимых переменных х, у в общем случае имеет вид
(1)
где А(х, у), В(х, у), …, с(х,у), f(x,y) — функции переменных х, у, заданные в некоторой области D плоскости хОу. Если f(x,y) ≡ 0 в D, то уравнение (1) называется однородным, в противном случае — неоднородным.
Обозначив левую часть уравнения (1) через L[u], запишем (1) в виде
L[u] = f(x, у). (2)
Соответствующее однородное уравнение запишется так:
L[u] = 0. (3)
Здесь L — линейный дифференциальный оператор, определенный на линейном пространстве C 2 (D) функций и = и(х, у).
Пользуясь свойством линейности оператора L, легко убедиться в справедливости следующих теорем, выражающих свойства решений линейных однородных дифференциальных уравнений с частными производными.
Теорема:
Если и(х, у) есть решение линейного однородного уравнения (3), то си(х, у), где с — любая постоянная, есть также решение уравнения (3).
Теорема:
Если и1(х, у) и и2(х, у) — решения линейного однородного уравнения (3), то сумма и1(х, у) + и2(x, у) есть также решение этого уравнения.
Следствие:
Если каждая из функций и1(х, у) и и2(х, у), u k(x, у) является решением уравнения (3), то линейная комбинация
где c1, c2 …, сk — произвольные постоянные, также является решением этого уравнения.
В отличие от обыкновенного линейного однородного дифференциального уравнения, имеющего конечное число линейно независимых частных решений, линейная
комбинация которых дает общее решение этого уравнения, уравнение с частными производными может иметь бесконечное множество линейно независимых частных решений.
Пример:
имеет общее решение k = φ(х), так что решениями его будут, например, функции 1,х,…, х n ,… . В соответствии с этим в линейных задачах для уравнений с частными производными нам придется иметь дело не только с линейными комбинациями конечного числа решений, но и с рядами , членами которых являются произведения постоянных Сп на частные решения иn(х, у) дифференциального уравнения.
Возможны случаи, когда функция и(х, у; λ) при всех значениях параметра λ из некоторого интервала (λо, λ1), конечного или бесконечного, является решением уравнения (3). В этом случае говорят, что решения уравнения зависят от непрерывно меняющегося параметра λ. Если теперь взять функцию С(λ) такую, что первые и вторые производные интеграла
по х и по у могут быть получены с помощью дифференцирования под знаком интеграла, то этот интеграл также будет решением уравнения (3). Для линейного неоднородного уравнения
L[u] = f (4)
справедливы следующие предложения.
Теорема:
Если и(х, у) есть решение линейного неоднородного уравнения (4), a v(x, у) — решение соответствующего однородного уравнения (3), то сумма и + v есть решение неоднородного уравнения (4).
Теорема:
Принцип суперпозиции. Если и1(х, у) —решение уравнения L[u] = f1, a u2(x,y) — решение уравнения L[u] = f2, то и1 + u2 — решение уравнения L[u] = f1 + f2.
Видео:Простейшие уравнения в частных производныхСкачать
Классификация линейных дифференциальных уравнений второго порядка с двумя независимыми переменными
Определение:
Линейное дифференциальное уравнение второго порядка
в некоторой области Q на плоскости хОу называется
1) гиперболическим в Ω, если
2) параболическим в Ω, если
3) эллиптическим в Ω, если
Пользуясь этим определением, легко проверить, что уравнения
— гиперболические при всех х и у, уравнение
— параболическое при всех х и у, а уравнение
— эллиптическое при всех х и у. Уравнение
— эллиптическое при у > 0, параболическое на линии у = 0 и гиперболическое в полуплоскости у
с помощью которой уравнение (1) преобразуется к более простому, каноническому виду, своему для каждого типа уравнения.
Уравнение гиперболического типа (∆ > 0) преобразуется к вшу
(два канонических вида уравнений гиперболического типа).
Уравнение параболического типа (∆ ≡ 0) преобразуется к виду
(канонический вид уравнения параболического типа).
Уравнение эллиптического типа (∆
(канонический вид уравнения эллиптического типа). Здесь F и Ф — некоторые функции, зависящие от искомой функции и, ее первых производных и независимых переменных ξ, η. Вид функций F и Ф определяется исходным уравнением (1).
В некоторых случаях каноническая форма уравнения позволяет найти общее решение исходного уравнения.
Как правило, приведениеуравнения(1) к каноническому виду путем замены независимых переменных имеет локальный характер, т. е. осуществимо лишь в некоторой достаточно малой окрестности рассматриваемой точки Mo(xo, уo).
Когда число п независимых переменных больше двух, также различают уравнения гиперболического, параболического и эллиптического типов. Например, при п = 4 простейшая каноническая форма таких уравнений имеет вид
Здесь и = и(х, у, z, t).
Замечание:
В общем случае, когда число независимых переменных больше двух, приведение линейною уравнения с переменными коэффициентами
к каноническому виду возможно только в данной точке и невозможно в любой сколь угодно малой окрестности этой точки.
Мы ограничимся рассмотрением линейных дифференциальных уравнений 2-го порядка. К таким уравнениям приводит большое количество различных физических задач.
Так, колебательные процессы различной природы (колебания струн, мембран, акустические колебания газа в трубах, электромагнитные колебания и т. д.) описываются уравнениями гиперболического типа. Простейшим из таких уравнений является уравнение колебаний струны (одномерное волновое уравнение): (2)
Здесь х — пространственная координата, t — время, где Т — натяжение струны, р — ее линейная плотность.
Процессы теплопроводности и диффузии приводят к уравнениям параболического типа. В одномерном случае простейшее уравнение теплопроводности имеет вид
(3)
Здесь где р — плотность среды, с — удельная теплоемкость, k — коэффициент теплопроводности.
Наконец, установившиеся процессы, когда искомая функция не зависит от времени, определяются уравнениями эллиптического типа, типичным представителем которых является уравнение Лапласа
(4)
Непосредственной проверкой убеждаемся в том, что решением уравнения (2) является всякая функция и(х, t) вида
Можно показать, что решениями уравнения (3) являются функции вида
произвольные постоянные, А — числовой параметр). Интегрируя решение и(х, t; λ) = уравнения (3) по параметру λ в пределах от — ∞ до + ∞ , получим так называемое фундаментальное решение U(x, t) = уравнения теплопроводности.
Наконец, нетрудно убедиться, что действительнозначные функции Рn(х,у) и Qn(x, у), определяемые из соотношения
являются решениями уравнения Лапласа (4) для п = 0, 1, 2…..Этот последний результат есть частный, случай общего утверждения, что и действительная и мнимая части аналитической функции
f(z) = u(x, у) + iv(x, у)
комплексного переменного z = х + iy являются решениями уравнения Лапласа (4).
В силу линейности уравнения (4) ряды
тоже будут решениями уравнения (4), если они сходятся равномерно, как и ряды, полученные из них двукратным почленным дифференцированием по каждому из аргументов х, у.
Таким образом, для простейшей — канонической — формы уравнений гиперболического, параболического и эллиптического типов мы располагаем о решениях этих уравнений некоторой информацией.
Видео:Семинар 6. Приведение уравнения кривой II порядка к каноническому видуСкачать
Постановка основных задач для линейных дифференциальных уравнений второго порядка
Для полного описания того или иного физического процесса мало иметь только дифференциальное уравнение процесса, надо еще задать начальное состояние этого процесса (начальные условия) и режим на границе S той области Ω, в которой процесс происходит (граничные условия). Это обусловлено неединственностью решения дифференциальных уравнений.
Пример:
Общее решение уравнения
имеет вид и(х, у) = f(x) + g(y), где f(x) и g(y) — произвольные дифференцируемые функции. Поэтому чтобы выделить решение, описывающее данный физический процесс, необходимо задать дополнительные условия.
Различают три основных типа задач для дифференциальных уравнений с частными производными (число независимых переменных равно п):
а) задача Коши для уравнений гиперболического и параболического типов: задаются начальные условия, область Ω совпадает со всем пространством R n , граничные условия отсутствуют;
б) краевая задача для уравнений эллиптического типа: задаются граничные условия на границе S области Ω, начальные условия отсутствуют;
в) смешанная задача для уравнений гиперболического и параболического типов: задаются начальные и граничные условия, Ω ≠ R n
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
🔥 Видео
13. Как решить дифференциальное уравнение первого порядка?Скачать
Линейные дифференциальные уравнения в частных производныхСкачать
Метод Лагранжа. Приведение квадратичной формы к каноническому и нормальному видамСкачать
Найти общее решение уравнения в частных производных первого порядка.Скачать
Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать
6. Линейные однородные уравнения в частных производных первого порядкаСкачать
Приведение кривой второго порядка к каноническому виду. ПримерСкачать
Горицкий А. Ю. - Уравнения математической физики - Уравнения с частными производными 1-го порядкаСкачать
Шапошникова Т. А. - Уравнения с частными производными. Часть 1. Семинары - Семинар 1Скачать