№ 1
Найти угол между плоскостями
2x — 4y + 4z — 5 = 0 и -3x +2y + 4z — 5 = 0 .
Решение
Угол между плоскостями определяется углом между соответствующими векторами нормалей к этим плоскостям. Координаты вектора нормали плоскости легко можно определить из общего уравнения плоскости, — это коэффициенты при переменных.
№ 2
Определить, при каких значениях l и m пара уравненеий
2 x + l y + 3 z — 5 = 0
m x — 6 y — 6 z + 2 = 0
будет определять параллельные плоскости.
Решение
Плоскости параллельны тогда и только тогда, когда векторы нормалей плоскостей коллинеарны:
№ 3
Определить, при каком значении l пара уравненеий
3 x — 5 y + l z — 3 = 0
x + 3 y + 2 z + 5 = 0
будет определять перпендикулярные плоскости.
Решение
Плоскости перпендикулярны тогда и только тогда, когда векторы нормалей плоскостей перпендикулярны, следовательно, их скалярное произведение равно нулю:
- Перпендикулярные плоскости, условие перпендикулярности плоскостей
- Перпендикулярные плоскости – основные сведения
- Перпендикулярность плоскостей – признак и условие перпендикулярности
- Уравнение плоскости
- Определить при каких значениях l и m следущии пары уравнений будут определять параллельные плоскости 3x — y + lz — 9 = 0 ; 2x + my + 2z — 3 = 0?
- Составить уравнение плоскости, которая проходит через точку М (3, 4, — 3) параллельно плоскости x + y + 7z = 0?
- При каком значении pрешением уравнения — px + 2y + p = 0является пара чисел ( — 1 ; 2)?
- При каком значении а пара чисел( — 1 ; — 3) является решением уравнения ах — 3у = — 7?
- Даны две параллельные плоскости альфа и бета?
- Если одна прямая параллельна плоскости а другая прямая параллельна этой же плоскости, необходимо ли, чтобы они были параллельны между собой?
- Вычислите при каком значении а решением уравнения — ах + 4у — а = 0, является пара ( — 2, 3)?
- При каком значении коэффициента А плоскость Аx + 3y — 5z + 1 = 0 будет параллельна прямой (х — 1) / 4 = (у + 2) / 3 = z / 1?
- В каких случаях графики будут параллельны?
- Помогите , пожалуйста : Напишите уравнение плоскости, если она проходит через точку B(3, — 2, 2) и : а) параллельна плоскости Oyz ; б) перпендикулярна оси Ox?
- 1. ) График уравнения у + 12 = 0 на координатной плоскости расположен а) параллельно оси у и проходит через точку х = 12 б) параллельно оси у и проходит через точку х = — 12 в) параллельно оси х и про?
- 💥 Видео
Видео:Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать
Перпендикулярные плоскости, условие перпендикулярности плоскостей
Данная статья посвящена перпендикулярным плоскостям. Будут даны определения, обозначения вместе с примерами. Будет сформулирован признак перпендикулярности плоскостей и условие, при котором он выполним. Будут рассмотрены решения подобных задач на примерах.
Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать
Перпендикулярные плоскости – основные сведения
При наличии угла между пересекающимися прямыми можно говорить об определении перпендикулярных плоскостей.
При условии, что угол между перпендикулярными прямыми равен 90 градусов, их называют перпендикулярными.
Обозначение перпендикулярности принято писать знаком « ⊥ ». Если в условии дано, что плоскости α и β перпендикулярные, тогда запись принимает вид α ⊥ β . На рисунке ниже показано подробно.
Когда в улови дано, что плоскость α и β перпендикулярны, это значит, что α перпендикулярна β и наоборот. Такие плоскости называют взаимно перпендикулярными. Например, стена и потолок в комнате являются взаимно перпендикулярными, так как при пересечении дают прямой угол.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Перпендикулярность плоскостей – признак и условие перпендикулярности
На практике можно встретить задания, где необходимо определить перпендикулярность заданных плоскостей. Для начала нужно определить угол между ними. Если он равен 90 градусам, тогда они считаются перпендикулярными из определения.
Для доказательства перпендикулярности двух плоскостей применяют признак перпендикулярности двух плоскостей. Формулировка содержит понятия перпендикулярная прямая и плоскость. Напишем точное определение признака перпендикулярности в виде теоремы.
Если одна из двух заданных плоскостей пересекает прямую, перпендикулярную другой плоскости, то заданные плоскости перпендикулярны.
Доказательство имеется в учебнике по геометрии за 10 — 11 класс, где есть подробное описание. Из признака следует, что, если плоскость перпендикулярна линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей.
Существует необходимое и достаточное условия для доказательства. Рассмотрим их для перпендикулярности двух заданных плоскостей, которое применяется в качестве проверки их перпендикулярности, находящихся в прямоугольной системе координат трехмерного пространства. Чтобы доказательство имело силу, необходимо применить определение нормального вектора плоскости, который способствует доказать необходимое и достаточное условие перпендикулярности плоскостей.
Для того, чтобы перпендикулярность пересекающихся плоскостей была явной, необходимо и достаточно, чтобы нормальные векторы заданных плоскостей пересекались под прямым углом.
Пусть в трехмерном пространстве задана прямоугольная система координат. Если имеем n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) , являющимися нормальными векторами заданных плоскостей α и β , то необходимым и достаточным условием перпендикулярности векторов n 1 → и n 2 → примет вид
n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0
Отсюда получаем, что n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) — нормальные векторы заданных плоскостей, а для действительности перпендикулярности α и β необходимо и достаточно, чтобы скалярное произведение векторов n 1 → и n 2 → было равным нулю, а значит, принимало вид n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0 .
Рассмотрим подробнее на примерах.
Определить перпендикулярность плоскостей, заданных в прямоугольной системе координат O x y z трехмерно пространства, заданного уравнениями x — 3 y — 4 = 0 и x 2 3 + y — 2 + z 4 5 = 1 ?
Для нахождения ответа на вопрос о перпендикулярности для начал необходимо найти координаты нормальных векторов заданных плоскостей, после чего можно будет выполнить проверку на перпендикулярность.
x — 3 y — 4 = 0 является общим уравнением плоскости, из которого можно сразу преобразовать координаты нормального вектора, равные n 1 → = ( 1 , — 3 , 0 ) .
Для определения координаты нормального вектора плоскости x 2 3 + y — 2 + z 4 5 = 1 перейдем от уравнения плоскости в отрезках к общему.
x 2 3 + y — 2 + z 4 5 ⇔ 3 2 x — 1 2 y + 5 4 z — 1 = 0
Тогда n 2 → = 3 2 , — 1 2 , 5 4 — это координаты нормального вектора плоскости x 2 3 + y — 2 + z 4 5 = 1 .
Перейдем к вычислению скалярного произведения векторов n 1 → = ( 1 , — 3 , 0 ) и n 2 → = 3 2 , — 1 2 , 5 4 .
Получим, что n 1 → , n 2 → = 1 · 3 2 + ( — 3 ) · — 1 2 + 0 · 5 4 = 3 .
Видим, что оно не равно нулю, значит, что заданные векторы не перпендикулярны. Отсюда следует, что плоскости также не перпендикулярны. Условие не выполнено.
Ответ: плоскости не перпендикулярны.
Прямоугольная система координат O x y z имеет четыре точки с координатами A — 15 4 , — 7 8 , 1 , B 17 8 , 5 16 , 0 , C 0 , 0 , 3 7 , D — 1 , 0 , 0 . Проверить, перпендикулярны ли плоскости А В С и A B D .
Для начала необходимо рассчитать скалярное произведение векторов данных плоскостей. Если оно равно нулю, только в этом случае можно считать, что они перпендикулярны. Находим координаты нормальных векторов n 1 → и n 2 → плоскостей А В С и A B D .
Из заданных координат точек вычислим координаты векторов A B → , A C → , A D → . Получаем, что:
A B → = 47 8 , 19 16 , — 1 , A C → = 15 4 , 7 8 , — 4 7 , A D → = 11 4 , 7 8 , — 1 .
Нормальный вектор плоскости А В С является векторным произведением векторов A B → и A C → , а для A B D векторное произведение A B → и A D → . Отсюда получим, что
n 1 → = A B → × A C → = i → j → k → 47 8 19 16 — 1 15 4 7 8 — 4 7 = 11 56 · i → — 11 28 · j → + 11 16 · k → ⇔ n 1 → = 11 56 , — 11 28 , 11 16 n 2 → = A B → × A D → = i → j → k → 47 8 19 16 — 1 11 4 7 8 — 1 = — 5 16 · i → + 25 8 · j → + 15 8 · k → ⇔ n 2 → = — 5 16 , 25 8 , 15 8
Приступим к нахождению скалярного произведения n 1 → = 11 56 , — 11 28 , 11 16 и n 2 → = — 5 16 , 25 8 , 15 8 .
Получим: n 1 → , n 2 → = 11 56 · — 5 16 + — 11 28 · 25 8 + 11 16 · 15 8 = 0 .
Если оно равно нулю, значит векторы плоскостей А В С и A B D перпендикулярны, тогда и сами плоскости перпендикулярны.
Ответ: плоскости перпендикулярны.
Можно было подойти к решению иначе и задействовать уравнения плоскостей А В С и A B D . После нахождения координат нормальных векторов данных плоскостей можно было бы проверить на выполнимость условие перпендикулярности нормальных векторов плоскостей.
Видео:Перпендикулярность плоскостей - определениеСкачать
Уравнение плоскости
Читайте также:
|