Операционный метод решения задачи коши дифференциальные уравнения

Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

VMath

Инструменты сайта

Основное

Информация

Действия

Содержание

Видео:Решение ДУ.Операционный методСкачать

Решение ДУ.Операционный метод

Применения операционного исчисления

Видео:Операционный метод для задачи КошиСкачать

Операционный метод для задачи Коши

Решение задачи Коши для ОДУ с постоянными коэффициентами

Пример 1.

Решить однородное дифференциальное уравнение с постоянными коэффициентами. begin &x»’+2x»+5x’=0,\ &x(0)=-1, ,, x'(0)=2, ,, x»(0)=0. end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: begin &x(t) risingdotseq X(p),\ &x'(t) risingdotseq pX(p)-x(0)=pX(p)+1,\ &x»(t) risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p)+p-2,\ &x»'(t) risingdotseq p^3X(p)-p^2x(0)-px'(0)-x»(0)=p^3X(p)+p^2-2p-0. end Справа стоит $0$, изображение для него тоже $0$.

Запишем уравнение с изображениями (операторное уравнение). Оно уже будет алгебраическим, а не дифференциальным: begin p^3X(p)+p^2-2p+2(p^2X(p)+p-2)+5(pX(p)+1)=0. end И найдем из него неизвестное $X(p)$: begin X(p)=-frac

. end Используя теоремы, приемы, таблицы операционного исчисления получим оригинал: begin X(p) risingdotseq x(t)=-displaystylefrac15-displaystylefrac45 e^mbox,2t+displaystylefrac35e^mbox,2t. end

Пример 2.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. begin x»-2x’-3x=e^,\ x(0)=x'(0)=0. end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: begin &x(t) risingdotseq X(p),\ &x'(t) risingdotseq pX(p)-x(0)=pX(p),\ &x»(t) risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p), end Справа стоит $e^$, изображение равно $displaystylefrac$.

Запишем операторное уравнение: begin (p^2-2p-3)X(p)=frac. end Находим $X(p)$: begin X(p)=frac. end Используя, например, вторую теорему разложения, получим оригинал: begin X(p) risingdotseq displaystylefrac14,te^-displaystylefrac,e^+displaystylefrac,e^. end

Пример 3.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. begin x»+3x’=mbox,2t,\ x(0)=2, ,, x'(0)=0. end

Пример 4.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. begin x»+x’=e^t,\ x(1)=1, ,, x'(1)=2. end Так как начальные условия даны не при $t=0$, сразу применить теорему о дифференцировании оригинала мы не можем. Поставим вспомогательную задачу для функции $y(t)=x(t+1)$: begin y»+y’=e^,\ y(0)=1, ,, y'(0)=2. end Записываем операторное уравнение begin (p^2Y(p)-p-2)+(pY(p)-1)=displaystylefrac. end

Решаем полученное уравение: begin Y(p)=displaystylefrac+displaystylefrac

. end begin y(t)=displaystylefrac12e^+left(displaystylefrac-2right)e^+(3-e). end Со сдвигом на $1$ находим решение исходной задачи: begin x(t)=y(t-1)=displaystylefrac12e^+left(displaystylefrac-2right)e^+(3-e). end

Видео:Операционное исчисление. Решить неоднородное дифференциальное уравнение 2 порядкаСкачать

Операционное исчисление. Решить неоднородное дифференциальное уравнение 2 порядка

Решение задачи Коши для систем линейных ДУ

Пример 5.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. begin left < begin&x’ = 2x+8, \ &y’ = x+4y+1, \ &x(0)=1,, y(0)=0. \ end right. end

Запишем изображения: begin begin x(t) risingdotseq X(p), & x'(t) risingdotseq p,X(p)-1, \ y(t) risingdotseq Y(p), & y'(t) risingdotseq p,Y(p). end end begin 8 risingdotseq displaystylefrac

, ,, 1 risingdotseq displaystylefrac

. end

Операторная система уравнений принимает вид: begin left < beginpX(p)-1 &= 2X(p)+displaystylefrac

, \ pY(p) &= X(p)+4Y(p)+displaystylefrac

.\ end right. end

Решаем систему, находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: begin X(p)=displaystylefrac

risingdotseq x(t)=-4+5e^. end begin Y(p)=displaystylefrac

risingdotseq y(t)=displaystylefrac34-displaystylefrac52,e^+displaystylefrac74,e^. end

Пример 6.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. begin left < begin&x’ = 2x+8y, \ &y’ = x+4y+1, \ &x(0)=1,, y(0)=0.\ end right. end

begin begin x(t) risingdotseq X(p), & x'(t) risingdotseq p,X(p)-1, \ y(t) risingdotseq Y(p), & y'(t) risingdotseq p,Y(p),\ 1 risingdotseq displaystylefrac

. &\ end end

Операторная система уравнений принимает вид: begin left < beginpX(p)-1 &= 2X(p)+8Y(p), \ pY(p) &= X(p)+4Y(p)+displaystylefrac

.\ end right. end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: begin X(p)=displaystylefrac

risingdotseq x(t)=frac49-frac43,t+frac59,e^. end begin Y(p)=displaystylefrac

risingdotseq y(t)=-displaystylefrac+displaystylefrac13,t+displaystylefrac,e^. end

Пример 7.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. begin left < begin&x’-2x-4y = mbox, t, \ &y’+x+2y = mbox,t, \ &x(0)=0,, y(0)=0.\ end right. end

Операторная система уравнений принимает вид: begin left < begin(p-2)X(p)-4Y(p) &= frac

, \ X(p)+(p+2)Y(p) &= frac

.\ end right. end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: begin X(p)=displaystylefrac

+displaystylefrac

-displaystylefrac

risingdotseq x(t)=2+4t-2,mbox,t-3,mbox,t. end begin Y(p)=-displaystylefrac

+displaystylefrac

risingdotseq y(t)=-2t+2,mbox,t. end

Видео:Операторный метод решения дифференциальных уравнений | Решение задачСкачать

Операторный метод решения дифференциальных уравнений | Решение задач

Решение ОДУ с помощью интеграла Дюамеля

Введем обозначения:
Уравнение: $x^(t)+a_1,x^(t)+ldots+a_n,x(t)=f(t)$.
Начальные условия: $x(0)=x'(0)=ldots=x^=0$.
Неизвестная функция $x(t)$, имеющая изображение $X(p)$.
Сложная функция в правой части $f(t)$, имеющая изображение $F(p)$.

Запишем алгоритм решения.
1. Решается вспомогательное уравнение $$ y^(t)+a_1,y^(t)+ldots+a_n,y(t)=1.$$ С учетом начальных условий левая и правые части уравнений будут иметь изображения: begin begin y(t) & risingdotseq Y(p),\ y'(t) & risingdotseq p,Y(p),\ y»(t)& risingdotseq p^2Y(p),\ &cdots\ y^(t)& risingdotseq p^nY(p). end end Вспомогательное операторное уравнение запишем в виде: begin Y(p)cdot h(p) = frac

,\ h(p)=p^n+a_1p^+ldots+a_n. end $$Y(p) risingdotseq y(t).$$

2. Решается исходное уравнение. Левая часть уравнения совпадает с левой частью вспомогательного, поэтому операторное уравнение записывается так: $$ X(p)cdot h(p) = F(p),$$ при этом $h(p)$, используя решение вспомогательного уравнения, можно записать в виде begin h(p)=frac. end Тогда $$ X(p) = F(p),pY(p).$$ Для нахождения $x(t)$ необходимо найти оригинал для $pY(p)F(p)$, то есть вычислить интеграл из формулы Дюамеля: $$ p F(p) Y(p) risingdotseq y(0)cdot f(t)+intlimits_0^t f(tau),y'(t-tau),dtau,$$ где $y(t)$ — уже найденное решение вспомогательного уравнения.

Пример 8.

Решить задачу Коши с помощью интеграла Дюамеля. begin x»+2x’=frac<1+e^>, ,, x(0)=0, ,, x'(0)=0. end Решаем через интеграл Дюамеля в два этапа, как было описано выше.

2. Исходное уравнение в операторном виде: begin (p^2+2p)X(p)=F(p). end Правая часть этого уравнения такая же, как и для вспомогательного. Левую часть $frac<1+e^>$ обозначим $f(t)$, ее изображение $F(p)$. Тогда begin X(p)=frac

. end Решая вспомогательное уравнение, мы находили: begin (p^2+2p)Y(p)=frac

,, Rightarrow ,, p^2+2p=frac. end Тогда begin X(p)=frac<frac>=pF(p)Y(p). end

Теперь по формуле Дюамеля получаем: begin X(p)=p F(p) Y(p) risingdotseq x(t)=y(0)cdot f(t)+intlimits_0^t f(tau),y'(t-tau),dtau, end где $y(t)$ — уже найденное решение вспомогательного уравнения: begin begin & y(t)=-frac14+frac12t+frac14 e^,\ & y(0)=0,\ & y'(t-tau)=frac12-frac12e^. end end

Видео:13. Операционное исчисление. Решить неоднородное ДУ 2 порядкаСкачать

13. Операционное исчисление. Решить неоднородное ДУ 2 порядка

Решение задачи Коши с правой частью, содержащей функцию Хэвисайда

Пример 9

Решить задачу Коши, когда правая часть дифференциального уравнения содержит составную функцию (выражаемую через функцию Хэвисайда). begin left < begin&x»+x=eta(t)-eta(t-2), \ &x(0)=0,\ &x'(0)=0. end right. end

Запишем изображения для левой и правой частей уравнения: begin &x»+x risingdotseq p^2,X(p)+X(p),\ &eta(t)-eta(t-2) risingdotseq frac

-frac<e^>

. end Для правой части, содержащей функцию Хэвисайда, воспользовались теоремой запаздывания.

Находим изображение для $displaystylefrac

$ с помощью теоремы об интегрировании оригинала: begin &frac

risingdotseq mbox,t ,, Rightarrow\ &frac

risingdotseq intlimits_0^t,mbox,tau,dtau=-mbox,t+1. end Тогда изображение для $displaystylefrac<e^>

$ по теореме запаздывания будет равно: begin frac<e^>

risingdotseq (-mbox,(t-2)+1)eta(t-2). end

Решение заданного уравнения: begin x(t)= (1-mbox,t)eta(t)-(1-mbox,(t-2))eta(t-2). end

Пример 10

Решить задачу Коши, когда правая часть дифференциального уравнения задана графически (и выражается через функцию Хэвисайда). begin left < begin&x»+4x=f(t). \ &x(0)=0,\ &x'(0)=0. end right. end Операционный метод решения задачи коши дифференциальные уравнения

Запишем аналитическое выражение для $f(t)$ с помощью функции Хэвисайда и найдем ее изображение: begin &f(t)=2teta(t)-4(t-1)eta(t-1)+2(t-2)eta(t-2),\ &F(p)=frac

(1-2e^+e^). end Операторное уравнение имеет вид: begin &X(p)(p^2+4)=frac

(1-2e^+e^),, Rightarrow\ &X(p)=frac

(1-2e^+e^). end

Для первого слагаемого найдем оригинал, разложив дробь на сумму простейших: begin frac

=frac-frac risingdotseq frac12t-frac14,mbox,2t. end Для остальных слагаемых воспользуемся теоремой запаздывания: begin X(p)risingdotseq x(t)= frac12left(t-frac12,mbox,2tright)eta(t)-\ -left((t-1)-frac12,mbox,2(t-1)right)eta(t-1)+\ +frac12left((t-2)-frac12,mbox,2(t-2)right)eta(t-2). end

Видео:Пример 65. Решить задачу Коши (диффуры)Скачать

Пример 65. Решить задачу Коши (диффуры)

Решение задачи Коши с периодической правой частью

Периодическую правую часть тоже очень удобно записывать с помощью функции Хэвисайда.

Пусть $f(t)$ — периодическая с периодом $T$ функция-оригинал. Обозначим через $f_0(t)$ функцию: begin f_0(t)=begin f(t),& 0 oplaplace/seminar5_2.txt · Последние изменения: 2021/05/28 18:23 — nvr

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Задача Коши онлайн

Данная задача возникает при поиске частного решения дифференциального уравнения. Наш онлайн калькулятор, построенные на основе системы Wolfram Alpha, позволяет найти решение задачи Коши для различных типов дифференциальных уравнений. Чтобы начать работу, необходимо ввести данные своей задачи (дифференциальное уравнение и начальные условия) в калькулятор.

Найти решение задачи Коши для дифференциального уравнения:

при заданных начальных условиях:

При постановке задачи Коши, указываются так называемые начальные условия, позволяющие однозначно выделить искомое частное решение из общего. Эти условия включают в себя значения функции и всех её производных до включительно (где -порядок дифференциального уравнения), заданные в одной и той же точке .

Поясним вышесказанное на конкретном примере. Пусть нам требуется найти частное решение дифференциального уравнения:

удовлетворяющее начальным условиям:

Первым делом, используя различные методы (Бернули, вариации произвольной постоянной Лагранжа), сначала находим общее решение данного дифференциального уравнения:

Теперь, для поиска частного решения, нам необходимо использовать заданные начальные условия. Для этого, находим производную функции полученной ранее:

Далее, поставляем начальные условия в функцию и её производную :

Решая полученную систему уравнений получаем значения произвольных постоянных и :

Подставляем полученные результаты в общее решение дифференциального уравнения, в результате получаем искомое частное решение:

Видео:Численное решение задачи Коши методом ЭйлераСкачать

Численное решение задачи Коши методом Эйлера

Другие полезные разделы:

Видео:ДУ Операционный методСкачать

ДУ Операционный метод

Оставить свой комментарий:

Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме

Видео:Система дифференциальных уравнений. Операционный методСкачать

Система дифференциальных уравнений. Операционный метод

Задача Коши — методы и примеры решения дифференциальных уравнений

Операционный метод решения задачи коши дифференциальные уравнения

Видео:Решить задачу Коши для дифференциального уравнения с помощью формулы ДюамеляСкачать

Решить задачу Коши для дифференциального уравнения с помощью формулы Дюамеля

Принцип и понятие

Под задачей Коши для дифференциального уравнения понимают выражение вида: y’ = f (x, y) с начальным условием, соответствующим равенству: y (x0) = y0. По сути, это обозначает, что необходимо найти такое решение уравнения, которое проходит через заданную точку игрек и икс нулевое. Решением задачи называется функция, заданная на указанном интервале в окрестности точки икс нулевое, то есть: x Є (x0 — q, x0 + q).

Для проведения анализа функции должны выполняться следующие критерии:

Операционный метод решения задачи коши дифференциальные уравнения

Следует отметить, что решение Коши включает в себя и сам интервал икс нулевое плюс минус кью, фактически q-окрестность. Это обозначает, что одна и та же функция, задаваемая одной формулой, но рассматриваемая на разных интервалах, представляет два разных нахождения задачи Коши. Отсюда возникает вопрос, при каких же ответах существует решение Коши, а также когда оно будет единственным.

Существует теорема, гарантирующая единственность какого-то решения задачи. На самом деле возможность аналитического подхода Коши требует лишь главного условия, при котором функция f будет непрерывной в какой-то окрестности точки x0, y0. Но для доказательства единственности этого недостаточно. Для нормального случая необходимо следующее:

  1. Функция f (x, y) непрерывна в некоторой окрестности точки (x0, y0).
  2. Существует такая константа C, что для любых точек икс и игрек выполняется неравенство: |f (x, y) — f (x2, y2)| ⩽ C |y1 — y2|.

По игреку функция должна иметь обыкновенный рост, то есть не убыстряющийся (локальный подъём не превышать линейный). Если эти два условия выполняются, то решение Коши существует и оно будет единственным. Это значит, что тогда у точки икс нулевое найдётся такая окрестность, в которой существует решение и к тому же оно будет единственным.

А это обозначает, что любая другая функция в этой окрестности, удовлетворяющая уравнениям начальных условий, совпадает с той, существование которой утверждается. При этом на практике проверка условия на самом деле вещь не очень сложная, особенно если функция f (y) имеет в окрестности ограниченную производную.

Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Алгоритм нахождения

Пусть имеется функция у’ = 2 * √ |y| и условие что y (0) = 0. Необходимо её исследовать. Тут можно заметить, что в этом случае функция зависит только от игрека и условию не удовлетворяет. В окрестностях точки с координатами (0, 0) она не удовлетворяет условию, так как любая окрестность захватывает ноль, а у корня квадратного по игреку будет бесконечная производная.

Это приводит не к единственности получения результатов. Так, у уравнения есть два решения: y1 тождественный нулю; y2 равняется x2. Согласно условию, игрек стоит по модулю, точнее, можно сказать, что для отрицательных значений икс будет меньше ноля, а положительных — больше.

Главный же вопрос заключается в продолжаемости анализа. Доказывается возможность простым построением решения с использованием специальных условий. В итоге должна быть найдена окрестность в точке x0. То есть берётся уравнение и точка с начальными координатами, затем выясняется, что в окрестности выполнены условия теоремы и строится решение.

Операционный метод решения задачи коши дифференциальные уравнения

Затем исследуется другая точка и изучается структура её окрестности. Например, обнаруживается, что условия существования единственности выполняются. Согласно теореме, тогда можно будет строить решение, где в качестве начальной точки будет взята любая координата. Другими словами, получается более широкое решение. Поэтому возникает вопрос, насколько можно приблизить точность ответа. Практические примеры показывают, что иногда можно двигаться до бесконечности, а в некоторых случаях сделать не более трёх шагов.

Если есть два уравнения y’ = f (x, y); y (x0) = y0 имеющие два решения: y1 (x), x Є I1 (эX), y2 (x), x єI2 (єX0). Тогда можно утверждать, что игрек два будет продолжением решения y1 (x) если в I2 входит I1, а y2 (x) равняется y1 (x) для любого икс из интервала I1. Следует учесть, что в этом определении в качестве областей функции всегда рассматривается интервал.

В изучении исследуются и матричные функциональные системы, состоящие из нескольких переменных A (z 1, z 2, …, zn). При этом z являются вещественными, а элементы матрицы могут быть как вещественными, так и комплексными. Исходя из этого даётся определение того, что функция, описываемая матрицей, непрерывна тогда, когда все элементы непрерывны в точке или на некотором множестве.

При определении используют численные и векторные функции от аргумента: y = (x), где y — это столбец от набора игреков, а икс со штрихом — от набора иксов. Таким образом, обобщённым решением будет такое действие, которое не будет иметь нетривиального продолжения, то есть вторые интервалы содержать первые.

Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Примеры задач

На практических занятиях по высшей математике студентам предлагается для понимания курса выполнить ряд практических заданий. Существует типовой набор задач, научившись решать которые учащийся досконально разберётся в теме. Вот некоторые из них.

Первый пример. Имеется уравнение y’ = (2y / x lnx) + 1/x, для которого установлено начальное условие y (e) = 0. Необходимо найти решение, проходящее через точку e. Перед тем как приступить непосредственно к решению, необходимо отметить, что функция f (x, y) определённа всюду, за исключением прямых x = 0 и x = 1. Отсюда следует, что краевое решение не может быть вычислено на интервале от нуля до единицы.

Операционный метод решения задачи коши дифференциальные уравнения

В этом примере должен содержаться интервал, имеющий координату точки e по иксу. Он не может включать значения меньше единицы, так как необходимо, чтобы выполнялось заданное условием уравнение, которое в точке x = 1 теряет смысл, ведь в ней функция неопределённа. Установив это, можно переходить к анализу уравнения.

Заданное равенство является линейным — неоднородным уравнением первого порядка. Для решения нужно сначала рассмотреть левое соотношение: y’ = 2y / x * lnx. Добавив константу, уравнение можно переписать как y = c * e. Теперь необходимо взять интеграл исходя из первообразной формулы: ∫ 2 dx / (x *lnx).

После того как будет найдена постоянная, через общий интегральный метод с учётом условия определения функции, уравнение в окрестности точки e будет иметь решение вида: y = ln2x — lnx. Из полученного выражения можно сделать вывод, что функция будет определена для всех положительных иксов, но рассматривать её необходимо от единицы до плюс бесконечности. Это и будет максимальное непродолжаемое решение задачи: xЄ (1, + ∞).

Второй пример. Пусть имеется функция y’ = y / (1+x 2 ) с начальным условием: y = y (0). В задании нужно будет рассмотреть дифференциальную кривую уравнения, проходящего через точку y0. Нужно заметить, что функция f (x, y) в любой ограниченной области двумерной плоскости удовлетворяет условию регулярности для теоремы существования единственности. В задаче спрашивается, каким должен быть y0, если предел максимального решения при иксе, стремящемся к плюс бесконечности, равняется единице.

Операционный метод решения задачи коши дифференциальные уравнения

Учитывая, что в этой постановке заложено, чтобы решение было определённо до плюс бесконечности и то, что уравнение является однородно линейным, по общей формуле особое решение будет иметь вид: y = c * e arctgx . Игрек нулевое не может равняться нулю, ведь в ином случае решением уравнения будет тождественный ноль и заданное условие выполняться не будет. В итоге получится, что y = y0 * e arctgx . Это решение и является подходящей функцией для любого интервала.

Видео:2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Операционный метод

Решение задачи Коши (примеров) целесообразно выполнять экономичным методом интегрирования линейных выражений, содержащих постоянные коэффициенты. Суть способа сводится к решению алгебраических равенств или неравенств. Алгоритм исследования заключается в следующих действиях:

Операционный метод решения задачи коши дифференциальные уравнения

  1. Функции Y (p) и F (p) обозначают как изображения для y (x) и f (x).
  2. Используя главные преобразования Лапласа, обрабатывая изображения, получают (pn (Yp) — p n -1 y 0 — …- yn -1) + a 1 (p n -1 y (p) — p n -2 y 0 — … — yn -2) + … + anY (p) = F (p) или, A (p)Y (p)+B (p) = F (p), причём A (p) и B (p) являются многочленами.
  3. Найденное решение y (p) = (F (p) — B (p)) / A (p) и будет искомым y (x) для искомого y (p).

Например, пусть необходимо решить уравнение вида: x» + 4x = sin (2t), при x (0) = 1, x'(0) = -2. Классическим методом находить ответ довольно трудоёмко, поэтому имеет смысл для заданного уравнения использовать операционное исчисление. Для начала следует ввести замену Lx = x. Затем к обеим частям равенства применить преобразование Лапласа: Lx » + L 4 x = L * sin (2 t). Отсюда: Lx = x, Lx » = p 2 x — px (0) — x'(0). Функция Лапласа используется для преобразования вещественной переменной в выражение с комплексной переменной и наоборот. Это и позволяет использовать её при решениях дифференциальных уравнений и систем.

На следующем этапе нужно подставить исходные данные в равенство: Lx» = p 2 x — p + 2. Далее, следует выполнить преобразование и выразить неизвестную функцию. В итоге должно получиться выражение: X = (p 3 — 2 p 2 — 4 p — 6) / (p 2 + 4) 2 . Теперь можно найти оригинал изображений: x = L-1 = cos (2t) — sin (2t) + (sin (2t) — 2tcos (2t))/8.

Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Использование онлайн-калькулятора

Часто решение задач по рассматриваемой теме связано с большими трудозатратами. Это касается времени и повышенного внимания. На практике не всегда получается правильно применить алгоритм и избежать ошибок. Поэтому имеет смысл для сложных заданий использовать онлайн-калькулятор. Решения на задачу Коши с его помощью доступны любому заинтересованному, имеющему доступ к интернету и устройство, поддерживающее работу веб-обозревателя.

Операционный метод решения задачи коши дифференциальные уравнения

В интернете существует довольно большое количество различных математических онлайн-решителей. В своём большинстве они бесплатны и ориентированы на работу даже с людьми, совершенно не разбирающимися в тематике. Поэтому они привлекательны не только как инструмент, предоставляющий быстрый и правильный ответ на поставленную задачу, но и как обучающие программы.

Всё дело в том, что на страницах сервисов, предлагающих такого рода услуги, содержится вся необходимая теоретическая информация. Кроме этого, они предлагают к рассмотрению типовые примеры с подробным объяснением решения. Из онлайн-калькуляторов, предоставляющих бесплатный доступ к своим услугам в русском сегменте интернета, можно отметить следующие:

  1. Math.semestr.
  2. Allcalc.
  3. Kontrolnaya-rabota.
  4. Matematikam.
  5. Primat.

Приведённые сервисы помогают без труда найти студентам решение дифференциального уравнения с заданными начальными условиями. Для этого в предлагаемую форму необходимо записать дифуравнение и через запятую начальные данные. Затем просто нажать интерактивную кнопку «Решить» и через некоторое время на экране дисплея отобразится ответ.

Операционный метод решения задачи коши дифференциальные уравнения

Для правильной записи уравнения существуют подсказки, так что разобраться, как работает сайт, сможет пользователь даже со слабой компьютерной подготовкой. Кроме этого, некоторые сервисы предлагают не просто ответ, а и пошаговое решение, к которому даётся комментарий. Решив несколько заданий, учащийся сможет разобраться в алгоритме и вычислять уравнения уже самостоятельно.

Следует отметить, что предложенные сервисы могут находить ответ для любой сложности математической задачи, например, вычисляя устойчивость математических моделей. Они также востребованы в инженерии и научных исследованиях, связанных с анализом функций. Для таких расчётов важны точность и время, что вполне могут обеспечить математические онлайн-сервисы.

💡 Видео

14. Операционное исчисление. Система ДУСкачать

14. Операционное исчисление.  Система ДУ

Практика 1 ИзоклиныСкачать

Практика 1  Изоклины

Задача Коши для дифференциальных уравненийСкачать

Задача Коши для дифференциальных уравнений
Поделиться или сохранить к себе: