Онлайн решение уравнений и неравенств с модулями

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:11 класс, 29 урок, Уравнения и неравенства с модулямиСкачать

11 класс, 29 урок, Уравнения и неравенства с модулями

Калькулятор онлайн.
Решение уравнений и неравенств с модулями.

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями. Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> |x| или abs(x) — модуль x

Введите уравнение или неравенство с модулями
Решить уравнение или неравенство

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Немного теории.

Видео:Неравенства с модулем | Математика | TutorOnlineСкачать

Неравенства с модулем | Математика | TutorOnline

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что ( |x-a| ) — это расстояние на числовой прямой между точками x и a: ( |x-a| = rho (x;; a) ). Например, для решения уравнения ( |x-3|=2 ) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: ( x_1=1 ) и ( x_2=5 ).

Онлайн решение уравнений и неравенств с модулями

Решая неравенство ( |2x+7| 0 ), то уравнение ( |f(x)|=c ) равносильно совокупности уравнений: ( left[begin f(x)=c \ f(x)=-c endright. )
2) Если ( c > 0 ), то неравенство ( |f(x)| c ) равносильно совокупности неравенств: ( left[begin f(x) c endright. )
4) Если обе части неравенства ( f(x) 0. Значит, |2х – 4| = (2х – 4), |х + 3| = (х + 3). Таким образом, на рассматриваемом промежутке заданное уравнение принимает вид: (2х – 4) + (х + 3) = 8. Решив это уравнение, находим: х = 3. Это значение принадлежит рассматриваемому промежутку, а потому является корнем заданного уравнения.
Итак, (x_1=-1, ; x_2=3 ).

Второй способ
Преобразуем уравнение к виду 2|x – 2| + |x + 3| = 8. Переведём эту аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки М(х), которые удовлетворяют условию ( 2rho(x; ;2)+ rho(x; ;-3) =8 ) или
MA + 2MB = 8
( здесь A = A(–3), B = B(2) ).

Онлайн решение уравнений и неравенств с модулями

Интересующая нас точка М не может находиться левее точки А, поскольку в этом случае 2MB > 10 и, следовательно, равенство MA + 2MB = 8 выполняться не может.
Рассмотрим случай, когда точка ( M_1(x) ) лежит между А и В. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(2 – х) = 8,
откуда находим: x = –1.
Рассмотрим случай, когда точка ( M_2(x) ) лежит правее точки B. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(х – 2) = 8,
откуда находим: х = 3.
Ответ: –1; 3.

Пусть теперь требуется решить неравенство ( |f(x)| |f(x)| ). Отсюда сразу следует, что ( g(x) > 0 ). Воспользуемся тем, что при ( g(x) > 0 ) неравенство ( |f(x)| 0, \ -g(x) 0 \ f(x) -g(x) endright. )

Третий способ.
Воспользуемся тем, что при ( g(x) > 0 ) обе части неравенства ( |f(x)| 0 \ (f(x))^2 0 \ x^2 — 3x + 2 -(2x — x^2) endright. )
Решая эту систему, получаем:
( left<begin x(x — 2) 0 \ (x^2 — 3x + 2)^2 0 endright. Rightarrow )
( left<begin 0 0 endright. Rightarrow )
( left<begin 0 05 endright. )
Из последней системы находим: ( 05 g(x) ). Освободиться от знака модуля можно тремя способами.

Первый способ
Если (f(x) geqslant 0), то ( |f(x)| = f(x) ) и заданное неравенство принимает вид ( f(x) > g(x) ).
Если (f(x) g(x) ).
Таким образом, задача сводится к решению совокупности двух систем неравенств:
( left<begin f(x) geqslant 0 \ f(x) > g(x) endright. ) ( left<begin f(x) g(x) endright. )

Второй способ.
Рассмотрим два случая: ( g(x) geqslant 0, ; g(x) g(x) ) выполняется для всех x из области определения выражения f(x).
Если ( g(x) geqslant 0 ), то воспользуемся тем, что согласно утверждению 3) в самом начале данной теории неравенство ( |f(x)| > g(x) ) равносильно совокупности неравенств ( f(x) g(x) ).
Таким образом, заданное неравенство сводится к совокупности трёх систем:
( left<begin g(x) g(x) endright. )

Третий способ.
Воспользуемся тем, что при ( g(x) geqslant 0 ) неравенство ( |f(x)| > g(x) ) равносильно неравенству ( (|f(x)|)^2 > (g(x))^2 ). Это позволит свести неравенство ( |f(x)| > g(x) ) к совокупности систем:
( left<begin g(x) (g(x))^2 endright. )

ПРИМЕР 5. Решить неравенство ( |x^2 — 3x + 2| geqslant 2x — x^2 )

Первый способ
Задача сводится к решению совокупности двух систем неравенств:
( left<begin x^2 — 3x + 2 geqslant 0 \ x^2 — 3x + 2 geqslant 2x — x^2 endright. ) ( left<begin x^2 — 3x + 2 0 ), то заданное неравенство равносильно совокупности двух неравенств:
( left[begin x^2 — 3x + 2 geqslant 2x — x^2 \ x^2 — 3x + 2 leqslant -(2x — x^2) endright. )
Таким образом, получаем совокупность неравенства и двух систем неравенств:
( 2x — x^2 leqslant 0; ) ( left<begin 2x — x^2 > 0 \ x^2 — 3x + 2 geqslant 2x — x^2; endright. ) ( left<begin 2x — x^2 > 0 \ x^2 — 3x + 2 leqslant -(2x — x^2) endright. )
Решив неравенство ( 2x — x^2 leqslant 0 ), получим: ( x leqslant 0,; x geqslant 2 )
Решив первую систему, получим: ( 0 0 ), то обе части заданного неравенства можно возвести в квадрат. Таким образом, получаем совокупность неравенства и системы неравенств:
( 2x — x^2 leqslant 0; ) ( left<begin 2x — x^2 > 0 \ (x^2 — 3x + 2)^2 geqslant (2x — x^2)^2 endright. )
Решив неравенство ( 2x — x^2 leqslant 0 ), получим: ( x leqslant 0,; x geqslant 2 )
Решая систему, получаем последовательно:
( left<begin x(x — 2)

Видео:Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать

Уравнения с модулем. Часть 2  | Математика | TutorOnline

Неравенства по-шагам

Видео:МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Результат

Примеры неравенств

  • Логарифмические неравенства
  • Показательные неравенства
  • Неравенства с модулем
  • Иррациональные неравенства
  • Тригонометрические неравенства
  • Линейные неравенства

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Видео:Уравнения с модулемСкачать

Уравнения с модулем

Неравенства

Решение неравенств онлайн

Перед тем как решать неравенства, необходимо хорошо усвоить как решаются уравнения.

Не важно каким является неравенство – строгим ( ) или нестрогим (≤, ≥), первым делом приступают к решению уравнения, заменив знак неравенства на равенство (=).

Поясним что означает решить неравенство?

После изучения уравнений в голове у школьника складывается следующая картина: нужно найти такие значения переменной, при которых обе части уравнения принимают одинаковые значения. Другими словами, найти все точки, в которых выполняется равенство. Всё правильно!

Когда говорят о неравенствах, имеют в виду нахождение интервалов (отрезков), на которых выполняется неравенство. Если в неравенстве две переменные, то решением будут уже не интервалы, а какие-то площади на плоскости. Догадайтесь сами, что будет решением неравенства от трех переменных?

Как решать неравенства?

Универсальным способом решения неравенств считают метод интервалов (он же метод промежутков), который заключается в определении всех интервалов, в границах которых будет выполняться заданное неравенство.

Не вдаваясь в тип неравенства, в данном случае это не суть, требуется решить соответствующее уравнение и определить его корни с последующим обозначением этих решений на числовой оси.

Можно сказать на этом полдела сделано. Далее, взяв любую точку на каждом интервале, осталось определить выполняется ли само неравенство? Если выполняется, то он входит в решение неравенства. Ели нет, то пропускаем его.

Как правильно записывать решение неравенства?

Когда вы определили интервалы решений неравенства, нужно грамотно выписать само решение. Есть важный нюанс – входят ли границы интервалов в решение?

Тут всё просто. Если решение уравнения удовлетворяет ОДЗ и неравенство является нестрогим, то граница интервала входит в решение неравенства. В противном случае – нет.

Рассматривая каждый интервал, решением неравенства может оказаться сам интервал, либо полуинтервал (когда одна из его границ удовлетворяет неравенству), либо отрезок – интервал вместе с его границами.

Не думайте, что решением неравенства могут быть только интервалы, полуинтервалы и отрезки. Нет, в решение могут входить и отдельно взятые точки.

Например, у неравенства |x|≤0 всего одно решение – это точка 0.

🎬 Видео

НЕРАВЕНСТВА С МОДУЛЕМСкачать

НЕРАВЕНСТВА С МОДУЛЕМ

Неравенства с модулем Часть 1 из 2 Простейшие неравенстваСкачать

Неравенства с модулем Часть 1 из 2 Простейшие неравенства

НЕРАВЕНСТВА С МОДУЛЕМ 😉 ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

НЕРАВЕНСТВА С МОДУЛЕМ 😉 ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

Математика | Двойной модуль. ОГЭСкачать

Математика | Двойной модуль. ОГЭ

Как решать неравенства с модулем. Два модуля в неравенстве.Скачать

Как решать неравенства с модулем. Два модуля в неравенстве.

МодульСкачать

Модуль

Модуль. Модульные уравнения, неравенства. Математика онлайн!Скачать

Модуль. Модульные уравнения, неравенства. Математика онлайн!

6 класс, 24 урок, Модульные уравнения и неравенства с одной переменнойСкачать

6 класс, 24 урок, Модульные уравнения и неравенства с одной переменной

Неравенства с модулем. Как правильно раскрывать модульСкачать

Неравенства с модулем. Как правильно раскрывать модуль

УРАВНЕНИЯ С МОДУЛЕМ | метод интерваловСкачать

УРАВНЕНИЯ С МОДУЛЕМ | метод интервалов

Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Метод рационализации. Неравенства с модулямиСкачать

Метод рационализации. Неравенства с модулями

Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline

Неравенство с двумя модулями. Задание 14 ЕГЭ по профильной математикеСкачать

Неравенство с двумя модулями. Задание 14 ЕГЭ по профильной математике
Поделиться или сохранить к себе: