Ограничения на тангенс в уравнении

Видео:Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Простейшие тригонометрические уравнения. Часть 1

Простейшими называются тригонометрические уравнения следующих четырёх видов:

Любое тригонометрическое уравнение в конечном счёте сводится к решению одного или нескольких простейших. К сожалению, на этом заключительном стандартном шаге школьники часто допускают ошибки, что ведет к потере баллов на ЕГЭ. Именно поэтому так важна данная тема.

Существуют два подхода к решению простейших тригонометрических уравнений.
Первый подход — бессмысленный и тяжёлый. Следуя ему, надо выучить по шпаргалке общие формулы, а также все частные случаи. Польза от этого столь же невелика, как от зубрежки шестнадцати строк заклинаний на непонятном языке. Мы отказываемся от такого подхода раз и навсегда.

Второй подход — логический и наглядный. Для решения простейших тригонометрических уравнений мы пользуемся тригонометрическим кругом и определениями тригонометрических функций.

Видео:Решение уравнений вида tg x = a и ctg x = aСкачать

Решение уравнений вида tg x = a и ctg x = a

Уравнения и

Напомним, что — абсцисса точки на единичной окружности, соответствующей углу , а — её ордината.

Ограничения на тангенс в уравнении

Из определения синуса и косинуса следует, что уравнения и имеют решения только при условии .

Абитуриент, будь внимателен! Уравнения или решений не имеют!

Начнём с самых простых уравнений.

. .
Мы видим, что на единичной окружности имеется лишь одна точка с абсциссой 1:

Ограничения на тангенс в уравнении
Эта точка соответствует бесконечному множеству углов: . Все они получаются из нулевого угла прибавлением целого числа полных углов (т. е. нескольких полных оборотов как в одну, так и в другую сторону).

Следовательно, все эти углы могут быть записаны одной формулой:

Это и есть множество решений данного уравнения. Напоминаем, что — это множество целых чисел.

Снова видим, что на единичной окружности есть лишь одна точка с абсциссой :

Ограничения на тангенс в уравнении

Эта точка соответствует углу и всем углам, отличающихся от на несколько полных оборотов в обе стороны, т. е. на целое число полных углов. Следовательно, все решения данного уравнения записываются формулой:

. .
Отмечаем на тригонометрическом круге единственную точку с ординатой :

Ограничения на тангенс в уравнении

И записываем ответ:

Обсуждать тут уже нечего, не так ли? 🙂

Ограничения на тангенс в уравнении

Можете, кстати, записать ответ и в другом виде:

Это — дело исключительно вашего вкуса.
Заодно сделаем первое полезное наблюдение. Чтобы описать множество углов, отвечающих одной-единственной точке тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить .

На тригонометрическом круге имеются две точки с ординатой 0:

Ограничения на тангенс в уравнении

Эти точки соответствуют углам Все эти углы получаются из нулевого угла прибавлением целого числа углов (т. е. с помощью нескольких полуоборотов в обе стороны). Таким образом,

Точки, лежащие на концах диаметра тригонометрического круга, мы будем называть диаметральной парой.

Точки с абсциссой 0 также образуют диаметральную пару, на сей раз вертикальную:

Ограничения на тангенс в уравнении

Все углы, отвечающие этим точкам, получаются из — прибавлением целого числа углов (полуоборотов):

Теперь мы можем сделать и второе полезное наблюдение.

Чтобы описать множество углов, отвечающих диаметральной паре точек тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить .

Переходим к следующему этапу. Теперь в правой части будет стоять табличное значение синуса или косинуса (отличное от 0 или ). Начинаем с косинуса.

Имеем вертикальную пару точек с абсциссой :

Ограничения на тангенс в уравнении

Все углы, соответствующие верхней точке, описываются формулой (вспомните первое полезное наблюдение!):

Аналогично, все углы, соответствующие нижней точке, описываются формулой:

Обе серии решений можно описать одной формулой:

Остальные уравнения с косинусом решаются совершенно аналогично. Мы приводим лишь рисунок и ответ.

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Теперь рассмотрим уравнения с синусом. Тут ситуация немного сложнее.

Имеем горизонтальную пару точек с ординатой :

Ограничения на тангенс в уравнении

Углы, отвечающие правой точке:

Углы, отвечающие левой точке:

Описывать эти две серии одной формулой никто не заставляет. Можно записать ответ в таком виде:

Тем не менее, объединяющая формула существует, и её надо знать. Выглядит она так:

На первый взгляд совершенно не ясно, каким образом она дает обе серии решений. Но давайте посмотрим, что получается при чётных . Если , то

Мы получили первую серию решений . А если — нечетно, , то

Это вторая серия .

Обратим внимание, что в качестве множителя при обычно ставится правая точка, в данном случае .

Остальные уравнения с синусом решаются точно так же. Мы приводим рисунок, запись ответа в виде совокупности двух серий и объединяющую формулу.

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

На этом с синусом и косинусом пока всё. Переходим к тангенсу.

Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Линия тангенсов.

Начнём с геометрической интерпретации тангенса — так называемой линии тангенсов. Это касательная к единичной окружности, параллельная оси ординат (см. рисунок).

Ограничения на тангенс в уравнении

Из подобия треугольников и имеем:

Мы рассмотрели случай, когда находится в первой четверти. Аналогично рассматриваются случаи, когда находится в остальных четвертях. В результате мы приходим к следующей геометрической интерпретации тангенса.

Тангенс угла равен ординате точки , которая является точкой пересечения линии тангенсов и прямой , соединяющей точку с началом координат.

Вот рисунок в случае, когда находится во второй четверти. Тангенс угла отрицателен.

Ограничения на тангенс в уравнении

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Уравнение

Заметим, что тангенс может принимать любые действительные значения. Иными словами, уравнение имеет решения при любом .

.
Имеем диаметральную горизонтальную пару точек:

Ограничения на тангенс в уравнении
Эта пара, как мы уже знаем, описывается формулой:

Имеем диаметральную пару:

Ограничения на тангенс в уравнении

Вспоминаем второе полезное наблюдение и пишем ответ:

Остальные уравнения с тангенсом решаются аналогично. Мы приводим лишь рисунки и ответы.

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

На этом заканчиваем пока и с тангенсом.

Уравнение нет смысла рассматривать особо. Дело в том, что:
уравнение равносильно уравнению ;

при уравнение равносильно уравнению .

Впрочем, существует также и линия котангенсов, но. . . Об этом мы вам расскажем на занятиях 🙂

Итак, мы разобрали простейшие тригонометрические уравнения, содержащие в правой части табличные значения тригонометрических функций. Именно такие задачи встречаются в части В вариантов ЕГЭ.

А что делать, например, с уравнением ? Для этого надо сначала познакомиться с обратными тригонометрическими функциями. О них мы расскажем вам в следующей статье.

Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

§20. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ, ОТЛИЧАЮЩИХСЯ ОТ ПРОСТЕЙШИХ.

Как правило, решение тригонометрических уравнений сводится к решению простейших уравнений с помощью преобразований тригонометрических выражений, разложения на множители и замены переменных.

20.1. ЗАМЕНА ПЕРЕМЕННЫХ ПРИ РЕШЕНИИ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ.

Следует помнить общий ориентир, когда замена переменных может выполняться без преобразования данных тригонометрических выражений.

Если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).

Задача 1. Решите уравнение Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

З а м е ч а н и е.

Записывая решения задачи 1, можно при введении замены sin x = t учесть, что | sin x | ≤1 , и записать ограничения | t | ≤ 1 , а далее заметить, что один из корней t = 3 не удовлетворяет условию | t | ≤1 , и после этого обратную замену выполнять только для t = 1/2 .

Задача 2. Решите уравнение Ограничения на тангенс в уравнении.

К о м м е н т а р и й

В заданное уравнение переменная входит только в виде tg 2x. Поэтому
удобно ввести новую переменную tg 2x = t. После выполнения обратной
замены и решения полученных простейших тригонометрических уравнений
следует в ответ записать все полученные корни.

Ограничения на тангенс в уравнении

При поиске плана решения более сложных тригонометрических уравнений
можно воспользоваться таким о р и е н т и р о м.

1. Пробуем привести все тригонометрические функции к одному аргументу.

2. Если удалось привести к одному аргументу, то пробуем все тригонометрические выражения привести к одной функции.

3. Если к одному аргументу удалось привести, а к одной функции — нет,
тогда пробуем привести уравнение к однородному.

4. В других случаях переносим все члены в одну сторону и пробуем получить
произведение или используем специальные приемы решения.

20.2. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
ПРИВЕДЕНИЕМ К ОДНОЙ ФУНКЦИИ (С ОДИНАКОВЫМ
АРГУМЕНТОМ)

Задача 1 Решите уравнение соs 2x – 5 sin x – 3 = 0.

Ограничения на тангенс в уравнении

З а м е ч а н и е.

При желании ответ можно записать в виде: Ограничения на тангенс в уравнении

Задача 2 Решите уравнение tg x + 2 сtg x = 3.

Ограничения на тангенс в уравнении

20.3. РЕШЕНИЕ ОДНОРОДНЫХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
И ПРИ­ВЕДЕНИЕ ТРИГОНОМЕТРИЧЕСКОГО УРАВНЕНИЯ
К ОДНОРОДНОМ

Ограничения на тангенс в уравнении

Все одночлены, стоящие в левой части этого уравнения, имеют степень 2
(напомним, что степень одночлена uv также равна 2). В этом случае уравнение (2) (и соответственно уравнение (1)) называется однородным, и для распознавания таких уравнений и их решения можно применять такой о р и е н т и р.

Если все члены уравнения, в левой и правой частях которого стоят
многочлены от двух переменных (или от двух функций одной переменной), имеют одинаковую суммарную степень* , то уравнение называется однородным. Решается однородное уравнение делением на наибольшую степень одной из переменных.

З а м е ч а н и е.

Придерживаясь этого ориентира, приходится делить обе части уравнения на выражение с переменной. При этом можно потерять корни
(если корнями являются те числа, при которых делитель равен нулю). Чтобы избежать этого, необходимо отдельно рассмотреть случай, когда выражение, на которое мы собираемся делить обе части уравнения, равно нулю,
и только после этого выполнять деление на выражение, не равное нулю.

Задача 1 Решите уравнение Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

Задача 2 Решите уравнение sin 3x = 5 соs 3x.

Ограничения на тангенс в уравнении

Задача 3 Решите уравнение Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

20.4. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ ВИДА f (x) = 0
С ПОМОЩЬЮ РАЗЛОЖЕНИЯ НА МНОЖИТЕЛИ

Задача 1 Решите уравнение sin 7x = sin 5x.

Ограничения на тангенс в уравнении

Задача 2 Решите уравнение sin x + sin 3x = sin 4x.

Ограничения на тангенс в уравнении

Ограничения на тангенс в уравнении

20.5. ОТБОР КОРНЕЙ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Если при решении тригонометрических уравнений необходимо выполнять отбор корней, то чаще всего это делается так:

находят (желательно наименьший) общий период всех тригонометрических функций, входящих в запись уравнения (конечно, если этот общий период существует); потом на этом периоде отбирают корни (отбрасывают посторонние), а те, которые остаются, периодически продолжают.

Пример Решите уравнение

Ограничения на тангенс в уравнении

І способ решения

Ограничения на тангенс в уравнении

З а м е ч а н и е.

При решении уравнения (1) мы не следили за равносильностью выполненых преобразований, но выполняли преобразования, не приводящие к потере корней. Тогда говорят (см. § 3), что мы пользовались
уравнениями-следствиями (если все корни первого уравнения являются
корнями второго уравнения, то второе уравнение называется следствием
первого). В этом случае мы могли получить посторонние для данного уравнения корни (то есть те корни последнего уравнения, которые не являются
корнями данного). Чтобы этого не случилось, можно пользоваться следующим о р и е н т и р о м.

Если при решении уравнения мы пользовались уравнениями-следствиями, то проверка полученных корней подстановкой в исходное уравнение является обязательной составной частью решения.

Если для решения этого же уравнения (1) мы будем использовать равносильные преобразования, то отбор корней будет организован немного иначе. А именно, нам придется учесть ОДЗ уравнения, то есть общую область
определения для всех функций, входящих в запись уравнения.

ІІ способ решения уравнения sin 4x tg x = 0.

Видео:Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать

Тригонометрические функции, y=tgx и y=ctgx,  их свойства и графики. 10 класс.

Простейшие тригонометрические уравнения с тангенсом и котангенсом

Чтобы уверенно решать простейшие уравнения с тангенсом или котангенсом нужно знать значения стандартных точек на круге и стандартные значения на осях тангенсов и котангенсов (если в этом материале есть пробелы, читайте « Как запомнить тригонометрический круг »).

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Алгоритм решения простейших уравнений с тангенсом

Давайте с вами рассмотрим типичное уравнение, например, (tg⁡x=sqrt).

Пример. Решить уравнение (tg⁡x=sqrt).

Чего от нас здесь хотят? Чтобы мы написали все такие значения угла в Пи, для которых тангенс равен корню из трех. Причем написать надо именно все такие углы. Давайте нарисуем тригонометрический круг и ось тангенсов…

Ограничения на тангенс в уравнении

…и обозначим то место на оси, куда мы должны попасть в итоге.

Ограничения на тангенс в уравнении

Теперь найдем через какие точки на окружности мы должны идти, чтобы попасть в этот самый корень из трех –проведем прямую через начало координат и найденную точку на оси тангенсов.

Ограничения на тангенс в уравнении

Точки найдены. Давайте подпишем значение одной из них…

Ограничения на тангенс в уравнении

…и запишем окончательный ответ – все возможные варианты значений в Пи, находящиеся в отмеченных точках: (x=frac+πn), (n∈Z).

Ограничения на тангенс в уравнении

Замечание. Вы, наверно, обратили внимание, что в отличие от уравнений с синусом и косинусом , здесь записывается только одна серия корней, причем в формуле добавляется (πn), а не (2πn). Дело в том, что в любом уравнении с тангенсом решением получаются две точки на окружности, которые находятся друг от друга на расстоянии (π). Благодаря этому значение обеих точек можно записать одной формулой в виде (x=t_0+πn), (n∈Z).

Пример. Решить уравнение (tg⁡x=-1).

Ограничения на тангенс в уравнении

Итак, окончательный алгоритм решения подобных задач выглядит следующим образом:

Шаг 1. Построить окружность, оси синусов и косинусов, а также ось тангенсов.

Шаг 2. Отметить на оси тангенсов значение, которому тангенс должен быть равен.

Шаг 3. Соединить прямой линией центр окружности и отмеченную точку на оси тангенсов.

Шаг 4. Найти значение одной из точек на круге.

Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z) (подробнее о формуле в видео), где (t_0) – как раз то значение, которые вы нашли в шаге 4.

Специально для вас мы сделали удобную табличку со всеми шагами алгоритма и разными примерами к нему. Пользуйтесь на здоровье! Можете даже распечатать и повесить на стенку, чтоб больше никогда не ошибаться в этих уравнениях.

Ограничения на тангенс в уравнении

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Алгоритм решения простейших уравнений с котангенсом

Сразу скажу, что алгоритм решения уравнений с котангенсом почти такой же, как и с тангенсом.

Шаг 1. Вопрос у нас практически тот же – из каких точек круга можно попасть в (frac<sqrt>) на оси котангенсов?
Строим круг, проводим нужные оси.

Ограничения на тангенс в уравнении

Теперь отмечаем на оси котангенсов значение, которому котангенс должен быть равен…

Ограничения на тангенс в уравнении

…и соединяем центр окружности и точку на оси котангенсов прямой линией.

Ограничения на тангенс в уравнении

По сути точки найдены. Осталось записать их все. Вновь определяем значение в одной из них…

Ограничения на тангенс в уравнении

…и записываем окончательный ответ по формуле (x=t_0+πn), (n∈Z), потому что у котангенса период такой же как у тангенса: (πn).

Ограничения на тангенс в уравнении

Кстати, вы обратили внимание, что ответы в задачах совпали? Здесь нет ошибки, ведь для любой точки круга, тангенс которой равен (sqrt), котангенс будет (frac<sqrt>).

Разберем еще пример, а потом подведем итог.

Пример. Решить уравнение (ctg⁡x=-1). Здесь подробно расписывать не буду, так как логика полностью аналогична вышеизложенной.

Ограничения на тангенс в уравнении

Итак, алгоритм решения простейших тригонометрических уравнений с котангенсом:

Шаг 1. Построить окружность и оси синусов и косинусов, а также ось котангенсов.

Шаг 2. Отметить на оси котангенсов значение, которому котангенс должен быть равен.

Шаг 3. Соединить центр окружности и точку на оси котангенсов прямой линией.

Шаг 4. Найти значение одной из точек на круге.

Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z), где (t_0) – как раз то значение, которые вы нашли в шаге 4. И табличка в награду всем дочитавшим до этого места.

Ограничения на тангенс в уравнении

Примечание. Возможно, вы обратили внимание, что при решении примеров 2 и 3 в обеих табличках мы использовали функции (arctg) и (arcctg). Если вы не знаете, что это – читайте эту статью.

💥 Видео

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой

Тангенс равен -1? / Тригонометрические уравнения / ПРОФИЛЬ ЕГЭ #77376Скачать

Тангенс равен -1? / Тригонометрические уравнения / ПРОФИЛЬ ЕГЭ #77376

СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрияСкачать

СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрия

Решение простейших тригонометрических уравнений tgx=a и ctgx=aСкачать

Решение простейших тригонометрических уравнений tgx=a и ctgx=a

Уравнение тангенс. Арктангенс. Видеоурок 30. Алгебра 10 классСкачать

Уравнение тангенс. Арктангенс. Видеоурок 30. Алгебра 10 класс

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

tgX = t. Простое тригонометрическое уравнение с тангенсом (bezbotvy)Скачать

tgX = t. Простое тригонометрическое уравнение с тангенсом (bezbotvy)

ТРИГОНОМЕТРИЯ с нуля за 30 минутСкачать

ТРИГОНОМЕТРИЯ с нуля за 30 минут

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Как решать тригонометрическое уравнение tgx=ctgx Уравнение с тангенсом и котангенсом ОДЗ в уравненииСкачать

Как решать тригонометрическое уравнение tgx=ctgx Уравнение с тангенсом и котангенсом ОДЗ в уравнении
Поделиться или сохранить к себе: