Очень сложные уравнения для 11 класса

Показательные уравнения (11-й класс)

Разделы: Математика

Класс: 11

Данная тема – “Показательные уравнения” – изучается в 11-м классе по учебнику автора А.Н. Колмогорова или в 10-м классе по учебнику автора С.М. Никольского. После уроков, где решались простейшие показательные уравнения, этот первый, где рассматриваются более сложные уравнения. Чтобы успеть рассмотреть наибольшее количество различных способов решения показательных уравнений, подходит метод коллективного обучения. По исследованиям психологов установлено, что учащиеся лучше, на 40%, усваивают новый материал, если его объясняют одноклассники или сверстники. В математике мало тем, которые можно изучить при использовании метода “коллективного способа обучения”. Темы “Показательные уравнения” и “Логарифмические уравнения” дают возможность применять данный метод и получать хорошие результаты по итогам изучения темы.

Цель дидактическая: сформировать у учащихся общеучебные умения, навыки; навыки самоконтроля, взаимоконтроля.

Цель воспитательная: обеспечить гуманистический характер обучения; обучение учащихся коллективной работе и взаимопомощи.

Цель учебная: научить учащихся решать показательные уравнения различными способами (на данном уроке тремя способами):

а) приведение к линейному виду;
б) приведение к квадратному виду;
в) введение новой переменной.

  1. Класс разбит на 6 групп (по 3–4 человека);
  2. В каждой группе находится консультант, с которым проведена консультация по решению одного из видов уравнений за день-два до урока;
  3. У каждого учащегося в группе есть консультационная карта с образцом решения показательного уравнения одним из способов, задания для самостоятельной работы под руководством консультанта и для самостоятельной работы с целью проверки усвоения нового материала.
  1. Постановка цели урока и его план.
  2. Работа по группам (10 мин.):
    а) консультант объясняет своей группе, с помощью консультационных карт (задание № 1 – пример), один из способов решения показательного уравнения;
    б) каждому учащемуся для самопроверки дается 4 уравнения на 4–5 мин. (задание № 2, учащийся может обращаться к консультанту за помощью или работать по образцу);
    в) по окончанию времени консультант оценивает каждого члена группы.
  3. От каждой группы к доске выходит один учащийся (предпочтительно не консультант) и объясняет свой способ решения показательного уравнения, оставшиеся на карточке уравнения выписываются на доску (эти уравнения для домашнего задания).
  4. Обобщение изученного материала под руководством учителя.
  5. Самостоятельная работа учащихся (задание № 3 на консультационной карте), где даны три уравнения, которые решаются тремя различными способами.
  6. Домашнее задание: от 8 до 12 уравнений, записанных на доске.

1-й способ: показательные уравнения, приводимые к линейному виду.

Уравнение вида: п * а х+в + к * а х+с + р * а х+б = В

I. Пример: 2 * 3 х+1 – 6 * 3 х–1 – 3 х = 9

1) вынесем общий множитель:
2) выполним действия в скобке:
3) найдем:
4)
5)
6)
3 х–1 (2 * 3 2 – 6 – 3 1 ) = 9
3 х–1 * 9 = 9
3 х–1 = 9 : 9
3 х–1 = 1, так как 3 0 = 1, то
Х – 1 = 0
X = 1
Ответ: 1

II. Задания для самопроверки

  1. 3 х+2 – 3 х+1 + 3 х = 21
  2. 2 х+1 + 3 * 2 х–3 = 76
  3. 33 * 2 х–1 – 2 х+1 = 29
  4. 2 * З х+1 – 6 * 3 х–1 = 12

III. Показательные уравнения для самостоятельной работы:

  1. 3 х + 3 3-х – 12 = 0
  2. 4 + 2 х = 2 2х–1
  3. 3 2х–1 + 3 2х–2 – 3 2х–4 = 315

Консультационная карта № 2

2-й способ: показательные уравнения, сводящиеся к виду квадратного уравнения.

Уравнения вида: п * а 2х + к * а х + р = 0

I. Пример: 2 2х+1 + 2 х+2 – 16 = О

  1. Применим свойство умножения степеней с одинаковым основанием: 2 2х * 2 1 + 2 х * 2 2 –16 = 0
  2. Пусть 2 х = а, где а > 0
  3. 2а 2 + 4а – 16 = 0
  4. Решаем квадратное уравнение и находим корни: а1 = – 4, а2 = 2
  5. – 4 х = 2
  6. х = 1
  7. Ответ: 1

II. Задания для самопроверки

  1. 2 х+1 + 4 х = 80
  2. 4 х –10 * 2 х–1 – 24 = 0
  3. 9 х – 8 * 3 х+1 – 81 = 0
  4. 2 * 9 х –17 * 3 х = 9

III. Показательные уравнения для самостоятельной работы

  1. 3 х + 3 3–х – 12 = 0
  2. 4 + 2 х = 2 2х–1
  3. 3 2х–1 + 3 2х–2 – 3 2х–4 = 315

3-й способ: показательные уравнения вида: п * а х+в + к * а –х+с = В

I. Пример: 3 х + 3 3–х – 12 = 0

  1. Применим свойство степени: а –в = 1/а в
  2. 3 х + 3 3 * 3 –х – 12 = 0
  3. 3 х + 27/3 х – 12 = 0
  4. Пусть 3 х = а, где а > 0
  5. а + 27/а –12 = 0
  6. а 2 – 12 а + 27 = 0
  7. Решаем квадратное уравнение, находим корни уравнения: а = 9, а = 3
  8. Возвращаемся к первоначальной переменной:
    3 х = 9 3 х = 3
    3 х = 3 2 3 х = 3 1
    х = 2 х = 1
  9. Ответ: 2; 1.

II. Задания для самопроверки

  1. 5 х + 5 2–х = 26
  2. 2 х+2 – 2 2–х =15
  3. 7 х –14 * 7 –х = 5
  4. 6 х – 35 = 36/6 х

III. Показательные уравнения для самостоятельной работы

  1. 3 х + 3 3–х – 12 = 0
  2. 4 + 2 х = 2 2х –1
  3. 3 2х–1 + 3 2х–2 – 3 2х–4 = 315

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Сложные уравнения

б) Найдите все корни этого уравнения, принадлежащие отрезку ([-2; 4]).

а) Решите уравнение (25^x-6cdot 5^+3125=0)
б) Найдите все корни этого уравнения, принадлежащие отрезку (left[ log_sqrt; log_sqrt7 right])

В ответ запишите корни без пробелов через точку с запятой в порядке возрастания. Сначала на пункт А, затем на пункт Б. Например, «8;13;8»

б) Найдите все корни этого уравнения, принадлежащие отрезку (left[log_<dfrac>;log_right])

Запишите сначала ответы на пункт а), затем через точку с запятой на пункт б). Ответы запишите без пробелов через точку с запятой по возрастанию, например: «-2;3;-2»

а) Решите уравнение (24cdot4^<x-05>-11cdot2^+6=0)

б) Найдите все корни этого уравнения, принадлежащие промежутку [-1; 1].

а) Решите уравнение (log_5=log_(x^4))
б) Найдите все корни, принадлежащие отрезку (left[ log_6; log_4right])

а) Решите уравнение (9^-7cdot 3^+4=0)
б) Найдите все корни этого уравнения, принадлежащие отрезку (left[ log_2;log_2right])

а) Решите уравнение (27^x-5cdot 9^x-3^+405=0)
б) Найдите все корни этого уравнения, принадлежащие отрезку (left[ log_<frac1><sqrt>;sqrtright])

а) Решите уравнение (log_5(2-x)=log_)
​б) Найдите все корни этого уравнения, принадлежащие отрезку (left[log_9<dfrac1>;log_2right])

В ответ запишите корни без пробелов через точку с запятой в порядке возрастания. Сначала на пункт А, затем на пункт Б. Например, «8;13;8»

а) Решите уравнение (4cdot25^<x+05>-60cdot5^+1=0)

б) Найдите все корни этого уравнения, принадлежащие промежутку [-3; -1].

б) Найдите все корни этого уравнения, принадлежащие отрезку (left[-2pi;-dfracright])

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Математика

52. Более сложные примеры уравнений.
Пример 1 .

5/(x – 1) – 3/(x + 1) = 15/(x 2 – 1)

Общий знаменатель есть x 2 – 1, так как x 2 – 1 = (x + 1)(x – 1). Умножим обе части этого уравнения на x 2 – 1. Получим:

Очень сложные уравнения для 11 класса

или, после сокращения,

5(x + 1) – 3(x – 1) = 15

5x + 5 – 3x + 3 = 15

Рассмотрим еще уравнение:

5/(x-1) – 3/(x+1) = 4(x 2 – 1)

Решая, как выше, получим:

5(x + 1) – 3(x – 1) = 4
5x + 5 – 3x – 3 = 4 или 2x = 2 и x = 1.

Посмотрим, оправдываются ли наши равенства, если заменить в каждом из рассмотренных уравнений x найденным числом.

Для первого примера получим:

Очень сложные уравнения для 11 класса

Видим, что здесь нет места никаким сомнениям: мы нашли такое число для x, что требуемое равенство оправдалось.

Для второго примера получим:

5/(1-1) – 3/2 = 15/(1-1) или 5/0 – 3/2 = 15/0

Здесь возникают сомнения: мы встречаемся здесь с делением на нуль, которое невозможно. Если в будущем нам удастся придать определенный, хотя бы и косвенный, смысл этому делению, то тогда мы можем согласиться с тем, что найденное решение x – 1 удовлетворяет нашему уравнению. До этой же поры мы должны признать, что наше уравнение вовсе не имеет решения, имеющего прямой смысл.

Подобные случаи могут иметь место тогда, когда неизвестное входит как-либо в знаменатели дробей, имеющихся в уравнении, причем некоторые из этих знаменателей, при найденном решении, обращаются в нуль.

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

Можно сразу видеть, что данное уравнение имеет форму пропорции: отношение числа x + 3 к числу x – 1 равно отношению числа 2x + 3 к числу 2x – 2. Пусть кто-либо, в виду такого обстоятельства, решит применить сюда для освобождения уравнения от дробей основное свойство пропорции (произведение крайних членов равно произведению средних). Тогда он получит:

(x + 3) (2x – 2) = (2x + 3) (x – 1)

2x 2 + 6x – 2x – 6 = 2x 2 + 3x – 2x – 3.

Здесь может возбудить опасения, что мы не справимся с этим уравнением, то обстоятельство, что в уравнение входят члены с x 2 . Однако, мы можем от обеих частей уравнения вычесть по 2x 2 — от этого уравнение не нарушится; тогда члены с x 2 уничтожатся, и мы получим:

6x – 2x – 6 = 3x – 2x – 3

Перенесем неизвестные члены влево, известные вправо — получим:

Вспоминая данное уравнение

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

мы сейчас же подметим, что найденное значение для x (x = 1) обращает в нуль знаменателей каждой дроби; от такого решения мы, пока не рассмотрели вопроса о делении на нуль, должны отказаться.

Если мы подметим еще, что применение свойства пропорции усложнило дело и что можно было бы получить более простое уравнение, умножая обе части данного на общий знаменатель, а именно на 2(x – 1) — ведь 2x – 2 = 2 (x – 1), то получим:

2(x + 3) = 2x – 3 или 2x + 6 = 2x – 3 или 6 = –3,

Это обстоятельство указывает, что данное уравнение не имеет таких, имеющих прямой смысл решений, которые не обращали бы знаменателей данного уравнения в нуль.
Решим теперь уравнение:

(3x + 5)/(x – 1) = (2x + 18)/(2x – 2)

Умножим обе части уравнения 2(x – 1), т. е. на общий знаменатель, получим:

Найденное решение не обращает в нуль знаменатель и имеет прямой смысл:

Очень сложные уравнения для 11 классаили 11 = 11

Если бы кто-либо, вместо умножения обеих частей на 2(x – 1), воспользовался бы свойством пропорции, то получил бы:

(3x + 5)(2x – 2) = (2x + 18)(x – 1) или
6x 2 + 4x – 10 = 2x 2 + 16x – 18.

Здесь уже члены с x 2 не уничтожались бы. Перенеся все неизвестные члены в левую часть, а известные в правую, получили бы

Это уравнение мы теперь решить не сумеем. В дальнейшем мы научимся решать такие уравнения и найдем для него два решения: 1) можно взять x = 2 и 2) можно взять x = 1. Легко проверить оба решения:

1) 2 2 – 3 · 2 = –2 и 2) 1 2 – 3 · 1 = –2

Если мы вспомним начальное уравнение

(3x + 5) / (x – 1) = (2x + 18) / (2x – 2),

то увидим, что теперь мы получим оба его решения: 1) x = 2 есть то решение, которое имеет прямой смысл и не обращает знаменателя в нуль, 2) x = 1 есть то решение, которое обращает знаменателя в нуль и не имеет прямого смысла.

Очень сложные уравнения для 11 класса

Найдем общего знаменателя дробей, входящих в это уравнение, для чего разложим на множители каждого из знаменателей:

1) x 2 – 5x + 6 = x 2 – 3x – 2x + 6 = x(x – 3) – 2(x – 3) = (x – 3)(x – 2),

2) x 2 – x – 2 = x 2 – 2x + x – 2 = x (x – 2) + (x – 2) = (x – 2)(x + 1),

3) x 2 – 2x – 3 = x 2 – 3x + x – 3 = x (x – 3) + (x – 3) = (x – 3) (x + 1).

Общий знаменатель равен (x – 3)(x – 2)(x + 1).

Умножим обе части данного уравнения (а его мы теперь можем переписать в виде:

Очень сложные уравнения для 11 класса

на общего знаменателя (x – 3) (x – 2) (x + 1). Тогда, после сокращения каждой дроби получим:

3(x + 1) – 2(x – 3) = 2(x – 2) или
3x + 3 – 2x + 6 = 2x – 4.

Это решение имеет прямой смысл: оно не обращает в нуль ни одного из знаменателей.

Если бы мы взяли уравнение:

Очень сложные уравнения для 11 класса

то, поступая совершенно так же, как выше, получили бы

3(x + 1) – 2(x – 3) = x – 2

3x + 3 – 2x + 6 = x – 2

3x – 2x – x = –3 – 6 – 2,

откуда получили бы

что невозможно. Это обстоятельство показывает, что нельзя найти для последнего уравнения решения, имеющего прямой смысл.

📸 Видео

Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | МатематикаСкачать

Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | Математика

Показательные уравнения. 11 класс.Скачать

Показательные уравнения. 11 класс.

СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

Сложные показательные уравнения: примеры и способы решенияСкачать

Сложные показательные уравнения: примеры и способы решения

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

11 класс, 12 урок, Показательные уравненияСкачать

11 класс, 12 урок, Показательные уравнения

Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnlineСкачать

Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnline

Иррациональные уравнения и их системы. 11 класс.Скачать

Иррациональные уравнения и их системы. 11 класс.

Показательные уравнения. Практическая часть. 11 класс.Скачать

Показательные уравнения. Практическая часть.  11 класс.

ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

11 класс, 17 урок, Логарифмические уравненияСкачать

11 класс, 17 урок, Логарифмические уравнения

Супер нестандартное уравнение. Олимпиада 11 классСкачать

Супер нестандартное уравнение. Олимпиада 11 класс

Показательные и логарифмические уравнения. Вебинар | МатематикаСкачать

Показательные и логарифмические уравнения. Вебинар | Математика

Системы уравнений 7-11 класс. Вебинар | МатематикаСкачать

Системы уравнений 7-11 класс. Вебинар | Математика
Поделиться или сохранить к себе: