Общий вид уравнения прямой второго порядка

Уравнение прямой, виды уравнения прямой на плоскости

В прошлом материале мы рассмотрели основные моменты, касающиеся темы прямой на плоскости. Теперь же перейдем к изучению уравнения прямой: рассмотрим, какое уравнение может называться уравнением прямой, а также то, какой вид имеет уравнение прямой на плоскости.

Содержание
  1. Определение уравнения прямой на плоскости
  2. Общее уравнение прямой линии
  3. Уравнение прямой в отрезках
  4. Уравнение прямой с угловым коэффициентом
  5. Каноническое уравнение прямой на плоскости
  6. Параметрические уравнения прямой на плоскости
  7. Нормальное уравнение прямой
  8. Кривые второго порядка — определение и построение с примерами решения
  9. Эллипс
  10. Гипербола
  11. Кривые второго порядка на плоскости
  12. Кривые второго порядка
  13. Кривая второго порядка — это некоторая линия на плоскости, которая в декартовой системе координат задается общим уравнением:
  14. Имеем дело с уравнением второй степени, в котором коэффициенты при старших членах — при вторых степенях одновременно не нули.
  15. Гипербола — множество точек на плоскости для каждой из которых абсолютная величина разности расстояний до двух данных точек F1 и F2 есть величина постоянная, меньшая расстояния между этими точками.
  16. Парабола — множество точек на плоскости для каждой из которых расстояние до данной точки F равно расстоянию до данной прямой f.
  17. 📸 Видео

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Определение уравнения прямой на плоскости

Допустим, что есть прямая линия, которая задана в прямоугольной декартовой системе координат O х у .

Прямая линия – это геометрическая фигура, которая состоит из точек. Каждая точка имеет свои координаты по осям абсцисс и ординат. Уравнение, которое описывает зависимость координат каждой точки прямой в декартовой системе O x y , называется уравнением прямой на плоскости.

Фактически, уравнение прямой на плоскости – это уравнение с двумя переменными, которые обозначаются как x и y . Уравнение обращается в тождество при подстановке в него значений любой из точек прямой линии.

Давайте посмотрим, какой вид будет иметь уравнение прямой на плоскости. Этому будет посвящен весь следующий раздел нашей статьи. Отметим, что существует несколько вариантов записи уравнения прямой. Объясняется это наличием нескольких способов задания прямой линии на плоскости, и также различной спецификой задач.

Видео:Аналитическая геометрия, 7 урок, Линии второго порядкаСкачать

Аналитическая геометрия, 7 урок, Линии второго порядка

Общее уравнение прямой линии

Познакомимся с теоремой, которая задает вид уравнения прямой линии на плоскости в декартовой системе координат O x y .

Уравнение вида A x + B y + C = 0 , где x и y – переменные, а А , В и C – это некоторые действительные числа, из которых A и B не равны нулю, задает прямую линию в декартовой системе координат O x y . В свою очередь, любая прямая линия на плоскости может быть задана уравнением вида A x + B y + C = 0 .

Таким образом, общее уравнение прямой на плоскости имеет вид A x + B y + C = 0 .

Поясним некоторые важные аспекты темы.

Посмотрите на рисунок.

Общий вид уравнения прямой второго порядка

Линия на чертеже определяется уравнением вида 2 x + 3 y — 2 = 0 , так как координаты любой точки, составляющей эту прямую, удовлетворяют приведенному уравнению. В то же время, определенное количество точек плоскости, определяемых уравнением 2 x + 3 y — 2 = 0 , дают нам прямую линию, которую мы видим на рисунке.

Общее уравнение прямой может быть полным и неполным. В полном уравнении все числа А , В и C отличны от нуля. Во всех остальных случаях уравнение считается неполным. Уравнение вида A x + B y = 0 определяет прямую линию, которая проходит через начало координат. Если A равно нулю, то уравнение A x + B y + C = 0 задает прямую, расположенную параллельно оси абсцисс O x . Если B равно нулю, то линия параллельна оси ординат O y .

Вывод: при некотором наборе значений чисел А , В и C с помощью общего уравнения прямой можно записать любую прямую линию на плоскости в прямоугольной системе координат O х у .

Прямая, заданная уравнением вида A x + B y + C = 0 , имеет нормальный вектор прямой с координатами A , B .

Все приведенные уравнения прямых, которые мы рассмотрим ниже, могут быть получены из общего уравнения прямой. Также возможен и обратный процесс, когда любое из рассматриваемых уравнений может быть приведено к общему уравнению прямой.

Разобраться во всех нюансах темы можно в статье «Общее уравнение прямой». В материале мы приводим доказательство теоремы с графическими иллюстрациями и подробным разбором примеров. Особое внимание в статье уделяется переходам от общего уравнения прямой к уравнениям других видов и обратно.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Уравнение прямой в отрезках

Уравнение прямой в отрезках имеет вид x a + y b = 1 , где a и b – это некоторые действительные числа, которые не равны нулю. Абсолютные величины чисел a и b равны длине отрезков, которые отсекаются прямой линией на осях координат. Длина отрезков отсчитывается от начала координат.

Благодаря уравнению можно легко построить прямую линию на чертеже. Для этого необходимо отметить в прямоугольной системе координат точки a , 0 и 0 , b , а затем соединить их прямой линией.

Построим прямую, которая задана формулой x 3 + y — 5 2 = 1 . Отмечаем на графике две точки 3 , 0 , 0 , — 5 2 , соединяем их между собой.

Общий вид уравнения прямой второго порядка

Дополнительно рекомендуем ознакомиться с материалом, изложенным в статье «Уравнение прямой в отрезках».

Видео:13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать

13. Общие уравнения прямой в пространстве / приведение к каноническому виду

Уравнение прямой с угловым коэффициентом

Эти уравнения, имеющие вид y = k · x + b должны быть нам хорошо известны из курса алгебры. Здесь x и y – это переменные, k и b – это некоторые действительные числа, из которых k представляет собой угловой коэффициент. В этих уравнениях переменная у является функцией аргумента x .

Дадим определение углового коэффициента через определение угла наклона прямой к положительному направлению оси O x .

Для обозначения угла наклона прямой к положительному направлению оси O x в декартовой системе координат введем величину угла α . Угол отсчитывается от положительного направления оси абсцисс до прямой линии против хода часовой стрелки. Угол α считается равным нулю в том случае, если линия параллельна оси O x или совпадает с ней.

Угловой коэффициент прямой – это тангенс угла наклона этой прямой. Записывается это следующим образом k = t g α . Для прямой, которая располагается параллельно оси O y или совпадает с ней, записать уравнение прямой с угловым коэффициентом не представляется возможным, так как угловой коэффициент в этом случае превращается в бесконечность (не существует).

Прямая, которая задана уравнением y = k · x + b , проходит через точку 0 , b на оси ординат. Это значит, что уравнение прямой с угловым коэффициентом y = k · x + b , задает на плоскости прямую линию, которая проходит через точку 0 , b и образует угол α с положительным направлением оси O x , причем k = t g α .

Изобразим прямую линию, которая определяется уравнением вида y = 3 · x — 1 .

Эта линия должна пройти через точку ( 0 , — 1 ) . Угол наклона α = a r c t g 3 = π 3 равен 60 градусов к положительному направлению оси O x . Угловой коэффициент равен 3

Общий вид уравнения прямой второго порядка

Обращаем ваше внимание, что с помощью уравнения прямой с угловым коэффициентом очень удобно искать уравнение касательной к графику функции в точке.

Больше материала по теме можно найти в статье «Уравнение прямой с угловым коэффициентом». Помимо теории там размещено большое количество графических примеров и подробный разбор задач.

Видео:Лекция 31.2. Кривые второго порядка. Гипербола.Скачать

Лекция 31.2. Кривые второго порядка. Гипербола.

Каноническое уравнение прямой на плоскости

Данный вид уравнения имеет вид x — x 1 a x = y — y 1 a y , где x 1 , y 1 , a x , a y — это некоторые действительные числа, из которых a x и a y не равны нулю.

Прямая линия, заданная каноническим уравнением прямой, проходит через точку M 1 ( x 1 , y 1 ) . Числа a x и a y в знаменателях дробей представляют собой координаты направляющего вектора прямой линии. Это значит, что каноническое уравнение прямой линии x — x 1 a x = y — y 1 a y в декартовой системе координат O x y соответствует линии, проходящей через точку M 1 ( x 1 , y 1 ) и имеющей направляющий вектор a → = ( a x , a y ) .

Изобразим в системе координат O x y прямую линию, которая задается уравнением x — 2 3 = y — 3 1 . Точка M 1 ( 2 , 3 ) принадлежит прямой, вектор a → ( 3 , 1 ) является направляющим вектором этой прямой линии.

Общий вид уравнения прямой второго порядка

Каноническое уравнение прямой линии вида x — x 1 a x = y — y 1 a y может быть использовано в случаях, когда a x или a y равно нулю. Наличие ноля в знаменателе делает запись x — x 1 a x = y — y 1 a y условной. Уравнение можно записать следующим образом a y ( x — x 1 ) = a x ( y — y 1 ) .

В том случае, когда a x = 0 , каноническое уравнение прямой принимает вид x — x 1 0 = y — y 1 a y и задает прямую линию, которая расположена параллельно оси ординат или совпадает с этой осью.

Каноническое уравнение прямой при условии, что a y = 0 , принимает вид x — x 1 a x = y — y 1 0 . Такое уравнение задает прямую линию, расположенную параллельно оси абсцисс или совпадающую с ней.

Больше материала на тему канонического уравнения прямой смотрите здесь. В статье мы приводим целый ряд решений задач, а также многочисленные примеры, которые позволяют лучше овладеть темой.

Видео:Видеоурок "Общее уравнение кривой 2 порядка"Скачать

Видеоурок "Общее уравнение кривой 2 порядка"

Параметрические уравнения прямой на плоскости

Данные уравнения имеют вид x = x 1 + a x · λ y = y 1 + a y · λ , где x 1 , y 1 , a x , a y — это некоторые действительные числа, из которых a x и a y не могут быть одновременно равны нулю. В формулу вводится дополнительный параметр λ , который может принимать любые действительные значения.

Назначение параметрического уравнения в том, чтобы установить неявную зависимости между координатами точек прямой линии. Для этого и вводится параметр λ .

Числа x , y представляют собой координаты некоторой точки прямой. Они вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра λ .

Предположим, что λ = 0 .

Тогда x = x 1 + a x · 0 y = y 1 + a y · 0 ⇔ x = x 1 y = y 1 , т. е. точка с координатами ( x 1 , y 1 ) принадлежит прямой.

Обращаем ваше внимание на то, что коэффициенты a x и a y при параметре λ в данном виде уравнений представляют собой координаты направляющего вектора прямой линии.

Рассмотрим параметрические уравнения прямой линии вида x = 2 + 3 · λ y = 3 + λ . Прямая, заданная уравнениями, в декартовой системе координат проходит через точку ( x 1 , y 1 ) и имеет направляющий вектор a → = ( 3 , 1 ) .

Больше информации ищите в статье «Параметрические уравнения прямой на плоскости».

Видео:Кривые второго порядкаСкачать

Кривые второго порядка

Нормальное уравнение прямой

Нормальное уравнение прямой имеет вид , A x + B y + C = 0 , где числа А , В , и C таковы, что длина вектора n → = ( A , B ) равна единице, а C ≤ 0 .

Нормальным вектором линии, заданной нормальным уравнением прямой в прямоугольной системе координат O х у , является вектор n → = ( A , B ) . Эта прямая проходит на расстоянии C от начала координат в направлении вектора n → = ( A , B ) .

Еще одним вариантом записи нормального уравнения прямой линии является cos α · x + cos β · y — p = 0 , где cos α и cos β — это два действительных числа, которые представляют собой направляющие косинусы нормального вектора прямой единичной длины. Это значит, что n → = ( cos α , cos β ) , справедливо равенство n → = cos 2 α + cos 2 β = 1 , величина p ≥ 0 и равна расстоянию от начала координат до прямой.

Рассмотрим общее уравнение прямой — 1 2 · x + 3 2 · y — 3 = 0 . Это общее уравнение прямой является нормальным уравнением прямой, так как n → = A 2 + B 2 = — 1 2 2 + 3 2 = 1 и C = — 3 ≤ 0 .

Уравнение задает в декартовой системе координат 0ху прямую линию, нормальный вектор которой имеет координаты — 1 2 , 3 2 . Линия удалена от начала координат на 3 единицы в направлении нормального вектора n → = — 1 2 , 3 2 .

Общий вид уравнения прямой второго порядка

Обращаем ваше внимание на то, что нормальное уравнение прямой на плоскости позволяет находить расстояние от точки до прямой на плоскости.

Если в общем уравнении прямой A x + B y + C = 0 числа А , В и С таковы, что уравнение A x + B y + C = 0 не является нормальным уравнением прямой, то его можно привести к нормальному виду. Подробнее об этом читайте в статье «Нормальное уравнение прямой».

Видео:Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

Кривые второго порядка — определение и построение с примерами решения

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде Общий вид уравнения прямой второго порядка

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения Общий вид уравнения прямой второго порядка
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение Общий вид уравнения прямой второго порядканазывается уравнением фигуры, если Общий вид уравнения прямой второго порядка, то есть (а, b) — решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения Общий вид уравнения прямой второго порядка, т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение Общий вид уравнения прямой второго порядкаи надо построить фигуру Ф, уравнением которой является Общий вид уравнения прямой второго порядка;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения Общий вид уравнения прямой второго порядкаи решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Видео:Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Приведение кривой второго порядка к каноническому виду. Пример

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек Общий вид уравнения прямой второго порядка, есть величина постоянная (большая, чем расстояние между Общий вид уравнения прямой второго порядка).

Точки Общий вид уравнения прямой второго порядканазываются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b — малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

Общий вид уравнения прямой второго порядка(7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку Общий вид уравнения прямой второго порядкакоординаты которой задаются формулами Общий вид уравнения прямой второго порядкабудет окружность (4) переводить в эллипс, заданный соотношением Общий вид уравнения прямой второго порядка

Число Общий вид уравнения прямой второго порядканазывается эксцентриситетом эллипса. Эксцентриситет Общий вид уравнения прямой второго порядкахарактеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении Общий вид уравнения прямой второго порядкастановится более вытянутым

Общий вид уравнения прямой второго порядка

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами Общий вид уравнения прямой второго порядка. Их длины Общий вид уравнения прямой второго порядкаи Общий вид уравнения прямой второго порядказадаются формулами Общий вид уравнения прямой второго порядкаПрямые Общий вид уравнения прямой второго порядканазываются директрисами эллипса. Директриса Общий вид уравнения прямой второго порядканазывается левой, а Общий вид уравнения прямой второго порядка— правой. Так как для эллипса Общий вид уравнения прямой второго порядкаи, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. Общий вид уравнения прямой второго порядка

Видео:Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертеж

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек Общий вид уравнения прямой второго порядкаесть величина постоянная (не равная нулю и меньшая, чем расстояние между Общий вид уравнения прямой второго порядка).

Точки Общий вид уравнения прямой второго порядканазываются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов Общий вид уравнения прямой второго порядкаобозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть Общий вид уравнения прямой второго порядка. Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты Общий вид уравнения прямой второго порядка.

Общий вид уравнения прямой второго порядка

Тогда Общий вид уравнения прямой второго порядкаА расстояние Общий вид уравнения прямой второго порядкаПодставив в формулу r=d, будем иметьОбщий вид уравнения прямой второго порядка. Возведя обе части равенства в квадрат, получимОбщий вид уравнения прямой второго порядка

Общий вид уравнения прямой второго порядкаили

Общий вид уравнения прямой второго порядка(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения Общий вид уравнения прямой второго порядкатакже определяют параболы.

Легко показать, что уравнение Общий вид уравнения прямой второго порядка, определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а Общий вид уравнения прямой второго порядкаО. Для этого выделим полный квадрат:

Общий вид уравнения прямой второго порядка

и сделаем параллельный перенос по формуламОбщий вид уравнения прямой второго порядкаОбщий вид уравнения прямой второго порядка

В новых координатах преобразуемое уравнение примет вид: Общий вид уравнения прямой второго порядкагде р — положительное число, определяется равенством Общий вид уравнения прямой второго порядка.

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстояниюОбщий вид уравнения прямой второго порядка, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условиюОбщий вид уравнения прямой второго порядка, запишем это равенство с помощью координат: Общий вид уравнения прямой второго порядка Общий вид уравнения прямой второго порядка, или после упрощения Общий вид уравнения прямой второго порядка. Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Общий вид уравнения прямой второго порядка

Видео:Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

Общий вид уравнения прямой второго порядка

где коэффициенты А, В и С не равны одновременно нулю Общий вид уравнения прямой второго порядка

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

Общий вид уравнения прямой второго порядкакоторое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число Общий вид уравнения прямой второго порядка— мень-

шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки Общий вид уравнения прямой второго порядканазывают вершинами эллипса, а Общий вид уравнения прямой второго порядка— его фокусами (рис. 12).

Общий вид уравнения прямой второго порядка

Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид Общий вид уравнения прямой второго порядкаи определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Общий вид уравнения прямой второго порядка

Эксцентриситет изменяется от нуля до единицы Общий вид уравнения прямой второго порядкаи характеризует форму эллипса. Для окружности Общий вид уравнения прямой второго порядкаЧем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

Общий вид уравнения прямой второго порядка

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

Общий вид уравнения прямой второго порядка

Общий вид уравнения прямой второго порядка— каноническое уравнение эллипса с центром в точке Общий вид уравнения прямой второго порядкабольшей полуосью а=3 и меньшей полуосью Общий вид уравнения прямой второго порядка

Найдем эксцентриситет эллипса:

Общий вид уравнения прямой второго порядка

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке Общий вид уравнения прямой второго порядкаа оси Общий вид уравнения прямой второго порядкапараллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е. Общий вид уравнения прямой второго порядка

В новой системе координат координаты Общий вид уравнения прямой второго порядкавершин и фокусов гиперболы будут следующими:

Общий вид уравнения прямой второго порядка

Переходя к старым координатам, получим:

Общий вид уравнения прямой второго порядка

Построим график эллипса.

Общий вид уравнения прямой второго порядкаЗадача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

Кривые второго порядка

Видео:Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядка

Общий вид уравнения прямой второго порядка

Видео:Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертеж

Кривая второго порядка — это некоторая линия на плоскости, которая в декартовой системе координат задается общим уравнением:

Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Общий вид уравнения прямой второго порядка

Видео:Поверхности второго порядкаСкачать

Поверхности второго порядка

Имеем дело с уравнением второй степени, в котором коэффициенты при старших членах — при вторых степенях одновременно не нули.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Общий вид уравнения прямой второго порядка

или можно встретить следующую форму записи:

Видео:Кривые 2 порядка. Канонический вид кривой 2 (второго) порядка доступно и просто.Скачать

Кривые 2 порядка. Канонический вид кривой 2 (второго) порядка доступно и просто.

Общий вид уравнения прямой второго порядка

К кривым второго порядка относятся окружность, эллипс, гипербола и парабола.

Покажем на примере определение значений коэффициентов.

Общий вид уравнения прямой второго порядка

Рассмотрим кривую второго порядка:

Видео:Кривые второго порядкаСкачать

Кривые второго порядка

Общий вид уравнения прямой второго порядка

Вычислим определитель из коэффициентов:

Общий вид уравнения прямой второго порядка

Если Δ = 0, кривая второго порядка параболического типа,

если Δ > 0, кривая второго порядка эллиптического типа,

если Δ F1 и F2 — фокусы.

Общий вид уравнения прямой второго порядка

с — фокальное расстояние,

Общий вид уравнения прямой второго порядка

Каноническое уравнение эллипса с центром симметрии в начале координат:

Общий вид уравнения прямой второго порядка

2а — большая ось эллипса, 2b — малая ось эллипса.

а — большая полуось эллипса, b — малая полуось эллипса.

Если a = b, то имеем окружность с радиусов R = a = b:

Общий вид уравнения прямой второго порядка

Если центр эллипса находится не в начале координат, а в некоторой точке C(x0;y0), оси эллипса параллельны осям координат, то каноническое уравнение эллипса имеет вид:

Общий вид уравнения прямой второго порядка

Эксцентриситет — число, равное отношению фокального расстояния к большей полуоси:

Общий вид уравнения прямой второго порядка

Эксцентриситет характеризует отклонение эллипса от окружности, т.е. чем эксцентриситет больше, тем эллипс более сплющен, вытянут.

Гипербола — множество точек на плоскости для каждой из которых абсолютная величина разности расстояний до двух данных точек F1 и F2 есть величина постоянная, меньшая расстояния между этими точками.

Общий вид уравнения прямой второго порядка

Общий вид уравнения прямой второго порядка

с — фокальное расстояние,

Общий вид уравнения прямой второго порядка

Расстояние от центра гиперболы до одного из фокусов называется фокальным расстоянием.

Каноническое уравнение гиперболы с центром симметрии в начале координат:

Общий вид уравнения прямой второго порядка

x — действительная ось, y — мнимая ось.

а — действительная полуось, b — мнимая полуось.

Если центр гиперболы находится в некоторой точке C(x0;y0), оси симметрии параллельны осям координат, то каноническое уравнение имеет вид:

Общий вид уравнения прямой второго порядка

Эксцентриситет гиперболы — число, равное отношению фокусного расстояния к действительной полуоси.

Общий вид уравнения прямой второго порядка

Чем эксцентриситет меньше, тем гипербола более вытянута, сплюшена вдоль оси Ох.

Директриса гиперболы — прямые, параллельные мнимой оси гиперболы и отстоящая от нее на расстоянии a/Ε.

f1 — правая директриса, f2 — левая директриса.

Общий вид уравнения прямой второго порядка

Порядок построения гиперболы :

1. Строим прямоугольник со сторонами 2a и 2b.

Общий вид уравнения прямой второго порядка

2. Провести асимптоты гиперболы — диагонали построенного прямоугольника.

Общий вид уравнения прямой второго порядка

3. Строим гиперболу с вершинами в точках А 1 (-а;0), А 2 (а;0).

Общий вид уравнения прямой второго порядка
Общий вид уравнения прямой второго порядкаОбщий вид уравнения прямой второго порядка

Парабола — множество точек на плоскости для каждой из которых расстояние до данной точки F равно расстоянию до данной прямой f.

F — фокус параболы, f — директриса параболы.

📸 Видео

Приводим уравнение кривой 2 порядка к каноническому видуСкачать

Приводим уравнение кривой 2 порядка  к каноническому виду
Поделиться или сохранить к себе: