Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общий перпендикуляр к двум скрещивающимся прямым. Расстояние между скрещивающимися прямыми

Теорема. Пусть p1 и p2 – две произвольные скрещивающиеся прямые скрещивающиеся прямые . Если рассмотреть всевозможные прямые A1A2, такие, что точка A1 лежит на прямой p1, а точка A2 лежит на прямой p2, то будут выполнены следующие два утверждения:

  1. Среди всех прямых A1A2 существует единственная прямая, перпендикулярная к прямой p1 и к прямой p2 ( общий перпендикуляр к двум скрещивающимся прямым ).
  2. Среди всех отрезков A1A2наименьшую длину имеет отрезок общего перпендикуляра к двум скрещивающимся прямым.

Доказательство. Докажем сначала существование общего перпендикуляра к двум скрещивающимся прямым.

Через произвольную точку прямой p1 проведем прямую Общий перпендикуляр к двум скрещивающимся прямым уравнение, параллельную прямой параллельную прямой p2 , а через произвольную точку прямой p2 проведем прямую Общий перпендикуляр к двум скрещивающимся прямым уравнение, параллельную прямой параллельную прямой p1 . Обозначим буквой α плоскость, проходящую через прямые p1 и Общий перпендикуляр к двум скрещивающимся прямым уравнение, а буквой β плоскость, проходящую через прямые p2 и Общий перпендикуляр к двум скрещивающимся прямым уравнение(рис 1).

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Поскольку прямая p1 параллельна прямой Общий перпендикуляр к двум скрещивающимся прямым уравнение, лежащей на плоскости β , то по признаку параллельности прямой и плоскости прямая p1 параллельна плоскости β. Точно так же, поскольку прямая Общий перпендикуляр к двум скрещивающимся прямым уравнениепараллельна прямой p2 , лежащей на плоскости β , то прямая Общий перпендикуляр к двум скрещивающимся прямым уравнениепо признаку параллельности прямой и плоскости параллельна плоскости β. Таким образом, плоскость α содержит две пересекающиеся прямые p1 и Общий перпендикуляр к двум скрещивающимся прямым уравнение, паралельные плоскости β. В силу признака параллельности плоскостей заключаем, что плоскости α и β параллельны.

Спроектируем прямую p1 на плоскость β. Получим прямую Общий перпендикуляр к двум скрещивающимся прямым уравнение, являющуюся проекцией прямой проекцией прямой p1, и обозначим точку пересечения прямых p2 и Общий перпендикуляр к двум скрещивающимся прямым уравнениебуквой B2 (рис. 2).

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Спроектируем теперь прямую p2 на плоскость α . Получим прямую Общий перпендикуляр к двум скрещивающимся прямым уравнение, являющуюся проекцией прямой проекцией прямой p2 , и обозначим точку пересечения прямых p1 и Общий перпендикуляр к двум скрещивающимся прямым уравнениебуквой B1 (рис. 3).

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Доказательство существования общего перпендикуляра к двум скрещивающимся прямым завершено.

Докажем, что построенная прямая B1B2 является единственным общим перпендикуляром к прямым p1 и p2 .

Таким образом, общий перпендикуляр к прямым p1 и p2 является линией пересечения плоскостей γ и δ, то есть прямой B1B2 .

Доказательство единственности общего перпендикуляра к двум скрещивающимся прямым завершено. Утверждение 1 доказано.

Перейдем к доказательству утверждения 2. Для этого рассмотрим произвольный отрезок A1A2 , у которого конец A1 лежит на плоскости α , а конец A2 лежит на плоскости β . Опустим перпендикуляр из точки A1 на плоскость β и обозначим основание этого перпендикуляра символом A3 (рис. 4).

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Если отрезок A1A2 не является перпендикуляром к плоскостям α и β, то точка A3 не совпадет с точкой A2 , и треугольник A1A2A3 будет прямоугольным треугольником с гипотенузой A1A2 и катетом A1A3. Поскольку в прямоугольном треугольнике длина катета меньше длины гипотенузы, то

Видео:Построение общего перпендикуляра к двум скрещивающимся прямым | Стереометрия #33 | ИнфоурокСкачать

Построение общего перпендикуляра к двум скрещивающимся прямым | Стереометрия #33 | Инфоурок

Скрещивающиеся прямые

Скрещивающиеся прямые – прямые, которые невозможно поместить в одну плоскость, то есть они не параллельны и не пересекаются.

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Видео:Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.Скачать

Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.

Признак скрещивающихся прямых

Если одна из прямых лежит в плоскости, а вторая пересекает эту плоскость в точке, отличной от точек первой прямой, то такие прямые – скрещивающиеся .

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Расстояние между скрещивающимися прямыми

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Через две скрещивающиеся прямые можно провести две параллельные плоскости (единственным образом).

Расстояние между скрещивающимися прямыми – есть расстояние между этими плоскостями.

Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Общий перпендикуляр к двум скрещивающимся прямым

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Общим перпендикуляром к двум скрещивающимся прямым называется отрезок, перпендикулярный каждой из двух скрещивающихся прямых, концы которого лежат на этих прямых.

Длина общего перпендикуляра равна расстоянию между скрещивающимися прямыми.

Видео:✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис ТрушинСкачать

✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис Трушин

Угол между скрещивающимися прямыми

Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.

(Одну из прямых можно вполне и не переносить параллельно самой себе, а ограничиться только параллельным переносом одной из прямых до пересечения со второй).

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать

19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямыми

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Признак

a Общий перпендикуляр к двум скрещивающимся прямым уравнениеα, b Общий перпендикуляр к двум скрещивающимся прямым уравнениеα = A , A Общий перпендикуляр к двум скрещивающимся прямым уравнениеa (чертеж 2.1.2). Допустим, что прямые a и b не скрещивающиеся, то есть они пересекаются. Тогда существует плоскость β, которой принадлежат прямые a и b . В этой плоскости β лежат прямая a и точка A . Поскольку прямая a и точка A вне ее определяют единственную плоскость, то β = α. Но b Общий перпендикуляр к двум скрещивающимся прямым уравнениеβ и b Общий перпендикуляр к двум скрещивающимся прямым уравнениеα, следовательно, равенство β = α невозможно.

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Теорема

Две скрещивающиеся прямые имеют общий перпендикуляр, и при том только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.

Общий перпендикуляр к двум скрещивающимся прямым уравнение

Доказательство

Пусть a и b – данные скрещивающиеся прямые. Проведем через них параллельные плоскости α и β. Прямые, пересекающие прямую a и перпендикулярные плоскости α, лежат в одной плоскости (γ). Эта плоскость пересекает плоскость β по прямой a`, параллельной a. Пусть B – точка пересечения прямых a` и b. Тогда прямая AB, перпендикулярная плоскости α, перпендикулярна и плоскости β, так как β параллельна α. Отрезок AB – общий перпендикуляр плоскостей α и β, а значит, и прямых a и b.
Докажем, что этот общий перпендикуляр единственный. Допустим, что у прямых a и b есть другой общий перпендикуляр CD. Проведем через точку С прямую b`, параллельную b. Прямая CD перпендикулярна прямой b, а значит, и b`. Так как она перпендикулярна прямой a, то она перпендикулярна плоскости α, а значит, параллельна прямой AB. Выходит, что через прямые AB и CD, как через параллельные, можно провести плоскость. В этой плоскости будут лежать наши скрещивающиеся прямые AC и BD, а это невозможно, что и требовалось доказать.

Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра.

📺 Видео

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Расстояние между скрещивающимися прямыми #2Скачать

Расстояние между скрещивающимися прямыми #2

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Расстояние между скрещивающимися прямымиСкачать

Расстояние между скрещивающимися прямыми

10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

#31. Как найти расстояние между скрещивающимися прямыми?Скачать

#31. Как найти расстояние между скрещивающимися прямыми?

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

найти уравнения биссектрис углов между прямымиСкачать

найти уравнения биссектрис углов между прямыми

Общий перпендикуляр к двум прямымСкачать

Общий перпендикуляр к двум прямым

Теорема о трёх перпендикулярах | Ботай со мной #032 | Борис Трушин |Скачать

Теорема о трёх перпендикулярах | Ботай со мной #032 | Борис Трушин |
Поделиться или сохранить к себе: