Теорема. Пусть p1 и p2 – две произвольные скрещивающиеся прямые скрещивающиеся прямые . Если рассмотреть всевозможные прямые A1A2, такие, что точка A1 лежит на прямой p1, а точка A2 лежит на прямой p2, то будут выполнены следующие два утверждения:
- Среди всех прямых A1A2 существует единственная прямая, перпендикулярная к прямой p1 и к прямой p2 ( общий перпендикуляр к двум скрещивающимся прямым ).
- Среди всех отрезков A1A2наименьшую длину имеет отрезок общего перпендикуляра к двум скрещивающимся прямым.
Доказательство. Докажем сначала существование общего перпендикуляра к двум скрещивающимся прямым.
Через произвольную точку прямой p1 проведем прямую 



Поскольку прямая p1 параллельна прямой 



Спроектируем прямую p1 на плоскость β. Получим прямую 

Спроектируем теперь прямую p2 на плоскость α . Получим прямую 

Доказательство существования общего перпендикуляра к двум скрещивающимся прямым завершено.
Докажем, что построенная прямая B1B2 является единственным общим перпендикуляром к прямым p1 и p2 .
Таким образом, общий перпендикуляр к прямым p1 и p2 является линией пересечения плоскостей γ и δ, то есть прямой B1B2 .
Доказательство единственности общего перпендикуляра к двум скрещивающимся прямым завершено. Утверждение 1 доказано.
Перейдем к доказательству утверждения 2. Для этого рассмотрим произвольный отрезок A1A2 , у которого конец A1 лежит на плоскости α , а конец A2 лежит на плоскости β . Опустим перпендикуляр из точки A1 на плоскость β и обозначим основание этого перпендикуляра символом A3 (рис. 4).
Если отрезок A1A2 не является перпендикуляром к плоскостям α и β, то точка A3 не совпадет с точкой A2 , и треугольник A1A2A3 будет прямоугольным треугольником с гипотенузой A1A2 и катетом A1A3. Поскольку в прямоугольном треугольнике длина катета меньше длины гипотенузы, то
Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Скрещивающиеся прямые
Скрещивающиеся прямые – прямые, которые невозможно поместить в одну плоскость, то есть они не параллельны и не пересекаются.
Видео:Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.Скачать

Признак скрещивающихся прямых
Если одна из прямых лежит в плоскости, а вторая пересекает эту плоскость в точке, отличной от точек первой прямой, то такие прямые – скрещивающиеся .
Видео:Построение общего перпендикуляра к двум скрещивающимся прямым | Стереометрия #33 | ИнфоурокСкачать

Расстояние между скрещивающимися прямыми
Через две скрещивающиеся прямые можно провести две параллельные плоскости (единственным образом).
Расстояние между скрещивающимися прямыми – есть расстояние между этими плоскостями.
Видео:19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать

Общий перпендикуляр к двум скрещивающимся прямым
Общим перпендикуляром к двум скрещивающимся прямым называется отрезок, перпендикулярный каждой из двух скрещивающихся прямых, концы которого лежат на этих прямых.
Длина общего перпендикуляра равна расстоянию между скрещивающимися прямыми.
Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Угол между скрещивающимися прямыми
Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.
(Одну из прямых можно вполне и не переносить параллельно самой себе, а ограничиться только параллельным переносом одной из прямых до пересечения со второй).
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Видео:✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис ТрушинСкачать

Общий перпендикуляр к двум скрещивающимся прямым уравнение
Признак
a 




Теорема
Две скрещивающиеся прямые имеют общий перпендикуляр, и при том только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.
Доказательство
Пусть a и b – данные скрещивающиеся прямые. Проведем через них параллельные плоскости α и β. Прямые, пересекающие прямую a и перпендикулярные плоскости α, лежат в одной плоскости (γ). Эта плоскость пересекает плоскость β по прямой a`, параллельной a. Пусть B – точка пересечения прямых a` и b. Тогда прямая AB, перпендикулярная плоскости α, перпендикулярна и плоскости β, так как β параллельна α. Отрезок AB – общий перпендикуляр плоскостей α и β, а значит, и прямых a и b.
Докажем, что этот общий перпендикуляр единственный. Допустим, что у прямых a и b есть другой общий перпендикуляр CD. Проведем через точку С прямую b`, параллельную b. Прямая CD перпендикулярна прямой b, а значит, и b`. Так как она перпендикулярна прямой a, то она перпендикулярна плоскости α, а значит, параллельна прямой AB. Выходит, что через прямые AB и CD, как через параллельные, можно провести плоскость. В этой плоскости будут лежать наши скрещивающиеся прямые AC и BD, а это невозможно, что и требовалось доказать.
Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра.
💥 Видео
Математика без Ху!ни. Уравнение плоскости.Скачать

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

Расстояние между скрещивающимися прямымиСкачать

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

10 класс, 7 урок, Скрещивающиеся прямыеСкачать

Расстояние между скрещивающимися прямыми #2Скачать

11. Прямая в пространстве и ее уравненияСкачать

#31. Как найти расстояние между скрещивающимися прямыми?Скачать

найти уравнения биссектрис углов между прямымиСкачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

Общий перпендикуляр к двум прямымСкачать

Теорема о трёх перпендикулярах | Ботай со мной #032 | Борис Трушин |Скачать


















