Общее уравнение перпендикуляра к двум прямым

Общий перпендикуляр к двум скрещивающимся прямым. Расстояние между скрещивающимися прямыми

Теорема. Пусть p1 и p2 – две произвольные скрещивающиеся прямые скрещивающиеся прямые . Если рассмотреть всевозможные прямые A1A2, такие, что точка A1 лежит на прямой p1, а точка A2 лежит на прямой p2, то будут выполнены следующие два утверждения:

  1. Среди всех прямых A1A2 существует единственная прямая, перпендикулярная к прямой p1 и к прямой p2 ( общий перпендикуляр к двум скрещивающимся прямым ).
  2. Среди всех отрезков A1A2наименьшую длину имеет отрезок общего перпендикуляра к двум скрещивающимся прямым.

Доказательство. Докажем сначала существование общего перпендикуляра к двум скрещивающимся прямым.

Через произвольную точку прямой p1 проведем прямую Общее уравнение перпендикуляра к двум прямым, параллельную прямой параллельную прямой p2 , а через произвольную точку прямой p2 проведем прямую Общее уравнение перпендикуляра к двум прямым, параллельную прямой параллельную прямой p1 . Обозначим буквой α плоскость, проходящую через прямые p1 и Общее уравнение перпендикуляра к двум прямым, а буквой β плоскость, проходящую через прямые p2 и Общее уравнение перпендикуляра к двум прямым(рис 1).

Общее уравнение перпендикуляра к двум прямым

Общее уравнение перпендикуляра к двум прямым

Общее уравнение перпендикуляра к двум прямым

Поскольку прямая p1 параллельна прямой Общее уравнение перпендикуляра к двум прямым, лежащей на плоскости β , то по признаку параллельности прямой и плоскости прямая p1 параллельна плоскости β. Точно так же, поскольку прямая Общее уравнение перпендикуляра к двум прямымпараллельна прямой p2 , лежащей на плоскости β , то прямая Общее уравнение перпендикуляра к двум прямымпо признаку параллельности прямой и плоскости параллельна плоскости β. Таким образом, плоскость α содержит две пересекающиеся прямые p1 и Общее уравнение перпендикуляра к двум прямым, паралельные плоскости β. В силу признака параллельности плоскостей заключаем, что плоскости α и β параллельны.

Спроектируем прямую p1 на плоскость β. Получим прямую Общее уравнение перпендикуляра к двум прямым, являющуюся проекцией прямой проекцией прямой p1, и обозначим точку пересечения прямых p2 и Общее уравнение перпендикуляра к двум прямымбуквой B2 (рис. 2).

Общее уравнение перпендикуляра к двум прямым

Общее уравнение перпендикуляра к двум прямым

Общее уравнение перпендикуляра к двум прямым

Спроектируем теперь прямую p2 на плоскость α . Получим прямую Общее уравнение перпендикуляра к двум прямым, являющуюся проекцией прямой проекцией прямой p2 , и обозначим точку пересечения прямых p1 и Общее уравнение перпендикуляра к двум прямымбуквой B1 (рис. 3).

Общее уравнение перпендикуляра к двум прямым

Общее уравнение перпендикуляра к двум прямым

Общее уравнение перпендикуляра к двум прямым

Доказательство существования общего перпендикуляра к двум скрещивающимся прямым завершено.

Докажем, что построенная прямая B1B2 является единственным общим перпендикуляром к прямым p1 и p2 .

Таким образом, общий перпендикуляр к прямым p1 и p2 является линией пересечения плоскостей γ и δ, то есть прямой B1B2 .

Доказательство единственности общего перпендикуляра к двум скрещивающимся прямым завершено. Утверждение 1 доказано.

Перейдем к доказательству утверждения 2. Для этого рассмотрим произвольный отрезок A1A2 , у которого конец A1 лежит на плоскости α , а конец A2 лежит на плоскости β . Опустим перпендикуляр из точки A1 на плоскость β и обозначим основание этого перпендикуляра символом A3 (рис. 4).

Общее уравнение перпендикуляра к двум прямым

Общее уравнение перпендикуляра к двум прямым

Общее уравнение перпендикуляра к двум прямым

Если отрезок A1A2 не является перпендикуляром к плоскостям α и β, то точка A3 не совпадет с точкой A2 , и треугольник A1A2A3 будет прямоугольным треугольником с гипотенузой A1A2 и катетом A1A3. Поскольку в прямоугольном треугольнике длина катета меньше длины гипотенузы, то

Видео:Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.Скачать

Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.

Математический портал

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры
  • Вы здесь:
  • Home

Общее уравнение перпендикуляра к двум прямымОбщее уравнение перпендикуляра к двум прямымОбщее уравнение перпендикуляра к двум прямымОбщее уравнение перпендикуляра к двум прямымОбщее уравнение перпендикуляра к двум прямым

Видео:Построение общего перпендикуляра к двум скрещивающимся прямым | Стереометрия #33 | ИнфоурокСкачать

Построение общего перпендикуляра к двум скрещивающимся прямым | Стереометрия #33 | Инфоурок

Расстояние между двумя скрещивающимися прямыми.

Пусть $L_1: frac=frac=frac$ и $L_2: frac=frac=frac$ — две скрещивающиеся прямые. Расстояние $rho(L_1, L_2)$ между прямыми $L_1$ и $L_2$ можно найти по следующей схеме:

1) Находим уравнение плоскости $P,$ проходящей через прямую $L_1,$ параллельно прямой $L_2:$Общее уравнение перпендикуляра к двум прямым

Плоскость $P$ проходит через точку $M_1(x_1, y_1, z_1),$ перпендикулярно вектору $overline n=[overline s_1, overline s_2]=(n_x, n_y, n_z),$ где $overline s_1=(m_1, l_1, k_1)$ и $overline s_2=(m_2, l_2, k_2)$ — направляющие вектора прямых $L_1$ и $L_2.$ Следовательно, уравнение плоскости $P: n_x(x-x_1)+n_y(y-y_1)+n_z(z-z_1)=0.$

2) Расстояние между прямыми $L_1$ и $L_2$ равно расстоянию от любой точки прямой $L_2$ до плоскости $P:$

Нахождение общего перпендикуляра скрещивающихся прямых.

Общее уравнение перпендикуляра к двум прямым

Для нахождения общего перпендикуляра прямых $L_1$ и $L_2,$ необходимо найти уравнения
плоскостей $P_1$ и $P_2,$ проходящих, соответственно, через прямые $L_1$ и $L_2,$ перпендикулярно плоскости $P.$

Пусть $P_1: A_1x+B_1y+C_1z+D_1=0;$

Тогда уравнение общего перпендикуляра имеет вид

Пример.

2.214.

а) доказать, что прямые не лежат в одной плоскости, то есть являются скрещивающимися;

б) написать уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1;$

в) вычислить расстояние между прямыми;

г) написать уравнения общего перпендикуляра к прямым $L_1$ и $L_2.$

Решение.

а) Если прямые $L_1$ и $L_2$ лежат в одной плоскости, то их направляющие вектора $overline(3, 4, -2),$ $overline(6, -4, -1),$ и вектор $overline l,$ соединяющий произвольную точку прямой $L_1$ и произвольную точку прямой $L_2$ компланарны. В качестве такого вектора $overline$ можно выбрать $overline(x_2-x_1, y_2-y_1, z_2-z_1).$ Проверим будут ли эти вектора компланарны.

Следовательно, вектора не компланарны и прямые не лежат в одной плоскости.

б) Запишем уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1.$ Эта плоскость проходит через точку $M_2(21, -5, 2)$ перпендикулярно вектору $overline n=[overline s_1, overline s_2].$

Таким образом, вектор $overline n$ имеет координаты $overline n(-12, -9, -36).$

Находим уравнение плоскости $$P:,, -12(x-21)-9(y+5)-36(z-2)=0Rightarrow$$ $$Rightarrow-12x-9y-36z+252-45+72=0Rightarrow -12x-9y-36z+279=0Rightarrow$$ $$Rightarrow 4x+3y+12z-93=0.$$

в) Расстояние между прямыми $L_1$ и $L_2$ равно расстоянию от любой точки прямой $L_1$ до плоскости $P:$

Ответ: $frac.$

г) Найдем уравнения плоскостей $P_1$ и $P_2,$ проходящих, соответственно, через прямые $L_1$ и $L_2,$ перпендикулярно плоскости $P.$

Имеем, $M_1=(-7, -4, -3)in P_1,$

Таким образом, $$P_1: 54(x+7)-44(y+4)-7(z+3)=54x-44y-7z+378-176-21=$$ $$=54x-44y-7z+181=0.$$

Аналогично находим $P_2:$

Имеем, $M_2=(21, -5, 2)in P_2,$

Таким образом, $$P_1: -45(x-21)-76(y+5)+34(z-2)=-45x-76y+34z+945-380-68=$$ $$=-45x-76y+34z+497=0.$$

Ответ: $left<begin54x-44y-7z+181=0;\ -45x-76y+34z+497=0.endright. $

2.215.

а) доказать, что прямые не лежат в одной плоскости, то есть являются скрещивающимися;

б) написать уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1;$

в) вычислить расстояние между прямыми;

г) написать уравнения общего перпендикуляра к прямым $L_1$ и $L_2.$

Ответ: б) $4x+12y+12z+76=0;$

г) $left<begin53x-7y-44z-429=0;\ 105x-23y-48z+136=0.endright. $

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Общее уравнение перпендикуляра к двум прямым

Признак

a Общее уравнение перпендикуляра к двум прямымα, b Общее уравнение перпендикуляра к двум прямымα = A , A Общее уравнение перпендикуляра к двум прямымa (чертеж 2.1.2). Допустим, что прямые a и b не скрещивающиеся, то есть они пересекаются. Тогда существует плоскость β, которой принадлежат прямые a и b . В этой плоскости β лежат прямая a и точка A . Поскольку прямая a и точка A вне ее определяют единственную плоскость, то β = α. Но b Общее уравнение перпендикуляра к двум прямымβ и b Общее уравнение перпендикуляра к двум прямымα, следовательно, равенство β = α невозможно.

Общее уравнение перпендикуляра к двум прямым

Теорема

Две скрещивающиеся прямые имеют общий перпендикуляр, и при том только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.

Общее уравнение перпендикуляра к двум прямым

Доказательство

Пусть a и b – данные скрещивающиеся прямые. Проведем через них параллельные плоскости α и β. Прямые, пересекающие прямую a и перпендикулярные плоскости α, лежат в одной плоскости (γ). Эта плоскость пересекает плоскость β по прямой a`, параллельной a. Пусть B – точка пересечения прямых a` и b. Тогда прямая AB, перпендикулярная плоскости α, перпендикулярна и плоскости β, так как β параллельна α. Отрезок AB – общий перпендикуляр плоскостей α и β, а значит, и прямых a и b.
Докажем, что этот общий перпендикуляр единственный. Допустим, что у прямых a и b есть другой общий перпендикуляр CD. Проведем через точку С прямую b`, параллельную b. Прямая CD перпендикулярна прямой b, а значит, и b`. Так как она перпендикулярна прямой a, то она перпендикулярна плоскости α, а значит, параллельна прямой AB. Выходит, что через прямые AB и CD, как через параллельные, можно провести плоскость. В этой плоскости будут лежать наши скрещивающиеся прямые AC и BD, а это невозможно, что и требовалось доказать.

Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра.

📺 Видео

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Уравнения прямой на плоскости | Векторная алгебраСкачать

Уравнения прямой на плоскости | Векторная алгебра

Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

Уравнение прямой по двум точкамСкачать

Уравнение прямой по двум точкам

Видеоурок "Общие уравнения прямой"Скачать

Видеоурок "Общие уравнения прямой"

Общий перпендикуляр к двум прямымСкачать

Общий перпендикуляр к двум прямым

11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/Скачать

Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline
Поделиться или сохранить к себе: