Этот онлайн калькулятор находит уравнения прямой, заданной пересечением двух плоскостей в пространстве.
Этот онлайн калькулятор предназначен для проверки решений задач, которые можно сформулировать следующим образом:
Записать канонические уравнения прямой, заданной уравнениями двух плоскостей
Вы задаете коэффициенты уравнений плоскостей, калькулятор выдает уравнения прямой в канонической форме. Немного теории, как обычно, можно почерпнуть под калькулятором
- Нахождение уравнений прямой, заданной пересечением двух плоскостей
- Канонические уравнения прямой, заданной пересечением двух плоскостей
- Приведение кривой второго порядка к каноническому виду
- Алгоритм перехода кривой второго порядка к каноническому виду
- Уравнение прямой, проходящей через две точки онлайн
- Предупреждение
- Уравнение прямой, проходящей через две точки − примеры и решения
- 🔥 Видео
Нахождение уравнений прямой, заданной пересечением двух плоскостей
Канонические уравнения прямой, заданной пересечением двух плоскостей
Если плоскости пересекаются, то система уравнений, приведенная в начале статьи, задает прямую в пространстве. Для записи уравнений этой прямой в каноническом виде, надо найти какую либо точку, принадлежащую этой прямой, и направляющий вектор.
Точка, принадлежащая прямой, также принадлежит и каждой из плоскостей, то есть является одним из решений системы уравнений выше. Для нахождения точки, принадлежащей прямой, переходят от системы из двух уравнений с тремя неизвестными к системе из двух уравнений с двумя неизвестными, произвольно принимая какую-либо координату точки за ноль. Как правило, при решении задач, выбирают ту координату, при занулении которой решение системы из двух уравнений с двумя неизвестными дает в ответе целые числа. Калькулятор учитывает этот факт и также пытается найти целочисленное решение, зануляя все координаты по очереди.
Направляющий вектор прямой ортогонален нормальным векторам плоскостей, которые задаются коэффициентами A, B и С в общем уравнении плоскости . Таким образом его можно найти как результат векторного произведения нормальных векторов плоскостей .
Точка и вектор дают нам канонические уравнения прямой:
Существуют частные случаи, когда одна или две координаты направляющего вектора равны нулю.
В случае, если нулю равны две координаты, направляющий вектор коллинеарен одной из координатных осей. Соответственно, точки прямой могут принимать любое значение по этой оси, при этом значения по двум другим осям будут постоянны. Например, если двумя нулевыми координатами будут y и z, канонические уравнения прямой будут выглядеть так:
В случае. если нулю равна одна координата, направляющий вектор лежит в одной из координатных плоскостей (плоскостей, образованных парами координатных осей), значение координаты по третьей оси, ортогональной этой плоскости (как раз той, для которой координата направляющего вектора равна нулю), опять будет постоянным. Например, если нулевой координатой будет x, то канонические уравнения прямой будут выглядеть так:
Эти случаи также учитываются калькулятором.
Видео:9 класс, 7 урок, Уравнение прямойСкачать
Приведение кривой второго порядка к каноническому виду
Пример №1 . Привести уравнение второго порядка к каноническому виду с помощью поворота и параллельного переноса осей координат. Построить кривую.
Пример №2 . Выполнив последовательно преобразования координат: поворот, а затем параллельный перенос координатных осей, преобразовать к каноническому виду уравнение кривой второго порядка и построить ее в исходной системе координат, а также найти параметры кривой.
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Алгоритм перехода кривой второго порядка к каноническому виду
Пример №1 . 4y=-6-sqrt(4x-x 2 )
sqrt(4x-x 2 ) = -(4y+6)
Возведем в квадрат
4x-x 2 = (4y+6) 2
Раскрывая скобки, получаем:
16y 2 +48y + 36 +x 2 -4x = 0
Далее решается калькулятором. Если самостоятельно решать, то получим:
4x-x 2 = (4y+6) 2
-(x 2 — 4x) = 2(y+3/2) 2
-(x 2 — 4x + 4) = (y+3/2) 2
-(x — 2) 2 = (y+3/2) 2
(y+3/2) 2 + (x — 2) 2 = 0
Пример №2 . x=1-2/3 sqrt(y 2 -4y-5)
Здесь надо сначала привести к нормальному виду.
3/2(x-1)=sqrt(y 2 -4y-5)
Возводим в квадрат
9/4(x-1) 2 =y 2 -4y-5
9/4x 2 -9/4*2x+9/4-y 2 +4y+5=0
9/4x 2 -9/2x-y 2 +4y+29/4=0
Далее можно решать как с калькулятором, так и без него:
9/4(x-1) 2 =y 2 -4y-5
9/4(x-1) 2 =y 2 -4y+4-4-5
9/4(x-1) 2 =(y 2 -2)-9
9/4(x-1) 2 -(y 2 -2) = -9
-1/4(x-1) 2 +1/9(y 2 -2) = 1
Видео:Видеоурок "Канонические уравнения прямой"Скачать
Уравнение прямой, проходящей через две точки онлайн
С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через две точки. Дается подробное решение с пояснениями. Для построения уравнения прямой задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точек в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать
Уравнение прямой, проходящей через две точки − примеры и решения
Пример 1. Построить прямую, проходящую через точки A(2, 1, 1), B(3, 1, -2).
(1) |
Подставив координаты точек A и B в уравнение (1), получим:
(Здесь 0 в знаменателе не означает деление на 0).
Составим параметрическое уравнение прямой:
Выразим переменные x, y, z через параметр t :
Каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:
Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:
Пример 2. Построить прямую, проходящую через точки A(1, 1/5, 1) и B(−2, 1/2, −2).
(2) |
Подставив координаты точек A и B в уравнение (2), получим:
Составим параметрическое уравнение прямой:
Выразим переменные x, y, z через параметр t :
Каноническое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:
Параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:
🔥 Видео
13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать
Каноническое уравнение прямой в пространстве Преход от общего уравненияСкачать
Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Каноническое уравнение прямой в пространстве. 11 класс.Скачать
Видеоурок "Общие уравнения прямой"Скачать
Написать канонические и параметрические уравнения прямой в пространствеСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Уравнение прямой. Видеоурок 6. Геометрия 9 классСкачать
53. Приведение общего уравнения кривой к каноническому видуСкачать
Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать
Лекция 23. Виды уравнений прямой на плоскости.Скачать
11. Прямая в пространстве и ее уравненияСкачать
Видеоурок "Общее уравнение прямой"Скачать
Уравнение прямой на плоскости. Решение задачСкачать
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать