Общее решение уравнений эллиптического вида

Видео:Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать

Приведение ДУ 2 порядка в частных производных к каноническому виду

Численные методы решения уравнений эллиптического типа

Введение

Наиболее распространённым уравнением эллиптического типа является уравнение Пуассона.
К решению этого уравнения сводятся многие задачи математической физики, например задачи о стационарном распределении температуры в твердом теле, задачи диффузии, задачи о распределении электростатического поля в непроводящей среде при наличии электрических зарядов и многие другие.

Для решения эллиптических уравнений в случае нескольких измерений используют численные методы, позволяющие преобразовать дифференциальные уравнения или их системы в системы алгебраических уравнений. Точность решения опреде­ляется шагом координатной сетки, количеством итераций и разрядной сеткой компьютера [1]

Цель публикации получить решение уравнения Пуассона для граничных условий Дирихле и Неймана, исследовать сходимость релаксационного метода решения на примерах.

Уравнение Пуассона относится к уравнениям эллиптического типа и в одномерном случае имеет вид [1]:

Общее решение уравнений эллиптического вида(1)

где x – координата; u(x) – искомая функция; A(x), f(x) – некоторые непрерывные функции координаты.

Решим одномерное уравнение Пуассона для случая А = 1, которое при этом принимает вид:

Общее решение уравнений эллиптического вида(2)

Зададим на отрезке [xmin, xmax] равномерную координатную сетку с шагом ∆х:

Общее решение уравнений эллиптического вида(3)

Граничные условия первого рода (условия Дирихле) для рассматривае­мой задачи могут быть представлены в виде:

Общее решение уравнений эллиптического вида(4)

где х1, xn – координаты граничных точек области [xmin, xmax]; g1, g2 – некоторые
константы.

Граничные условия второго рода (условия Неймана) для рассматривае­мой задачи могут быть представлены в виде:

Общее решение уравнений эллиптического вида(5)

Проводя дискретизацию граничных условий Дирихле на равномерной координатной сетке (3) с использованием метода конечных разностей, по­лучим:

Общее решение уравнений эллиптического вида(6)

где u1, un – значения функции u(x) в точках x1, xn соответственно.

Проводя дискретизацию граничных условий Неймана на сетке (3), по­лучим:

Общее решение уравнений эллиптического вида(7)

Проводя дискретизацию уравнения (2) для внутренних точек сетки, по­лучим:

Общее решение уравнений эллиптического вида(8)

где ui, fi – значения функций u(x), f(x) в точке сетки с координатой xi.

Таким образом, в результате дискретизации получим систему линейных алгебраических уравнений размерностью n, содержащую n – 2 уравнения вида (8) для внутренних точек области и уравнения (6) и (7) для двух граничных точек [1].

Ниже приведен листинг на Python численного решения уравнения (2) с граничными условиями (4) – (5) на координатной сетке (3).

Общее решение уравнений эллиптического вида

Общее решение уравнений эллиптического вида

Общее решение уравнений эллиптического вида

Общее решение уравнений эллиптического вида

Разработанная мною на Python программа удобна для анализа граничных условий.Приведенный алгоритм решения на Python использует функцию Numpy — u=linalg.solve(a,b.T).T для решения системы алгебраических уравнений, что повышает быстродействие при квадратной матрице . Однако при росте числа измерений необходимо переходить к использованию трех диагональной матрицы решение для которой усложняется даже для очень простой задачи, вот нашёл на форуме такой пример:

Программа численного решения на равномерной по каждому направлению сетки задачи Дирихле для уравнения конвекции-диффузии

Общее решение уравнений эллиптического вида(9)

Используем аппроксимации центральными разностями для конвективного слагаемого и итерационный метод релаксации.для зависимость скорости сходимости от параметра релаксации при численном решении задачи с /(х) = 1 и 6(х) = 0,10. В сеточной задаче:

Общее решение уравнений эллиптического вида(10)

Представим матрицу А в виде суммы диагональной, нижней треугольной и верхней треугольных матриц:

Общее решение уравнений эллиптического вида(10)

Метод релаксации соответствует использованию итерационного метода:

Общее решение уравнений эллиптического вида(11)

При Общее решение уравнений эллиптического вида говорят о верхней релаксации, при Общее решение уравнений эллиптического вида— о нижней релаксации.

Общее решение уравнений эллиптического вида

На графике показана зависимость числа итераций от параметра релаксации для уравнения Пуассона (b(х) = 0) и уравнения конвекции-диффузии (b(х) = 10). Для сеточного уравнения Пуассона оптимальное значении параметра релаксации находится аналитически, а итерационный метод сходиться при Общее решение уравнений эллиптического вида.

  1. Приведено решение эллиптической задачи на Python с гибкой системой установки граничных условий
  2. Показано что метод релаксации имеет оптимальный диапазон (Общее решение уравнений эллиптического вида) параметра релаксации.

Ссылки:

  1. Рындин Е.А. Методы решения задач математической физики. – Таганрог:
    Изд-во ТРТУ, 2003. – 120 с.
  2. Вабищевич П.Н.Численные методы: Вычислительный практикум. — М.: Книжный дом
    «ЛИБРОКОМ», 2010. — 320 с.

Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Численное решение уравнений в частных производных эллиптического типа на примере уравнений Лапласа и Пуассона

Среди всех типов уравнений математической физики эллиптические уравнения с точки зрения вычислителей стоят особняком. С одной стороны, имеется хорошо развитая теория решения эллиптических уравнений и систем. Достаточно легко доказываются теоремы об устойчивости разностных схем для эллиптических уравнений. Во многих случаях получаются априорные оценки точности расчетов и числа итераций при решении возникающих систем сеточных уравнений . С другой стороны, системы сеточных уравнений , возникающие при решении уравнений методами сеток, имеют большую размерность и плохо обусловлены. Для решения таких систем разработаны специальные итерационные методы .

6.1. Постановка задачи. Простейшая разностная схема «крест». Устойчивость схемы «крест»

Будем рассматривать двухмерное уравнение Пуассона

Общее решение уравнений эллиптического вида

в единичном квадрате Общее решение уравнений эллиптического видас краевыми условиями первого рода на границе расчетной области Общее решение уравнений эллиптического вида

Общее решение уравнений эллиптического вида

( Общее решение уравнений эллиптического вида— заданная на границе функция ).

В случае прямоугольной области граничные условия удобно записать в следующем виде:

Общее решение уравнений эллиптического вида

Для простоты выкладок введем равномерную расчетную сетку с узлами <xm, yl> , m, l = 0, 1, . , M с равным количеством шагов по каждому пространственному направлению, сеточную область D — совокупность всех узлов сетки, включая граничные, и сеточную функцию < uml >. В этом случае шаги по координатам предполагаются равными. В случае неравных шагов по каждому направлению полученные результаты не изменятся, а запись уравнений станет более громоздкой.

Общее решение уравнений эллиптического вида

Выбираем простейший пятиточечный шаблон разностной схемы «крест» . На этом шаблоне аппроксимирующее разностное уравнение легко выписать. Для этого производные заменим вторыми разностями:

Общее решение уравнений эллиптического вида

где h — шаг по координатам, или в операторной форме

Общее решение уравнений эллиптического вида

Общее решение уравнений эллиптического вида

Эту же разностную схему можно записать в каноническом виде для разностных схем для эллиптических уравнений:

Общее решение уравнений эллиптического вида

Такую каноническую запись не следует путать с канонической формой записи итерационного метода, которая встретится ниже.

Такая схема обладает вторым порядком аппроксимации по обеим координатам. Это легко показать, применяя разложение в ряд Тейлора функции — проекции точного решения на сетку — вплоть до членов четвертого порядка включительно. Проведем такое разложение для одного из операторов, стоящих в данном разностном уравнении:

Общее решение уравнений эллиптического вида

Здесь учтено разложение проекции точного решения в ряд Тейлора

Общее решение уравнений эллиптического вида

и аналогичное разложение для um — 1.

Для рассматриваемого двухмерного уравнения получим выражение для главного члена невязки

Общее решение уравнений эллиптического вида

Рассмотрим устойчивость полученной схемы. Отметим, что методы исследования на устойчивость , применяемые для эволюционных (зависящих от времени) уравнений, здесь не работают. Действовать приходится на основе определения устойчивости.

Сформулируем и докажем две леммы, которые облегчат процедуру доказательства устойчивости разностной схемы.

Видео:Эллиптические уравнения. ТеорияСкачать

Эллиптические уравнения. Теория

Дифференциальные уравнения в частных производных¶

Дифференциальные уравнениями в частных производных с дополнительными уравнениями, выражающими граничные и начальные условия описывают большинство физических процессов. В общем случае линейное дифференциальное уравнение в частных производных второго порядка имеет вид

Классификация проводится в соответствии с характеристическими кривыми второго порядка для данных уравнений. По соотношению значений a, b и c уравнение относят к эллиптическим, параболическим или гиперболическим в данной точке. Тип ДУ определяется знаком выражения, называемого дискриминантом: (D(x,y) = b^2-4ac) .

  • Если (D(x, y) , дифференциальное уравнение является эллиптическим в точке (x, y).
  • Если (D(x, y) = 0) , дифференциальное уравнение является параболическим в точке (x, y).
  • Если (D(x, y) > 0) , дифференциальное уравнение является гиперболическим в точке (x, y).

Если коэффициенты a, b, c постоянные и значение D не зависит от точки, то в зависимости от знака D уравнение является полностью эллиптическим, гиперболическим или параболическим. В случае если коэффициенты не являются постоянными, для одного и того же уравнения возможны области, в которых оно является уравнением разного типа.

Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Эллиптические уравнения¶

Эллиптическими уравнениями являются уравнения Лапласа и Пуассона, возникающие в теории потенциала для электрического поля. Так же к уравнению этого тапа сводятся многие стационарные (установившиеся) решения параболических и гиперболических задач.

Простейший вид Эллиптического уравнения:

Такими уравнения описываются стационарное распределение температуры в процессе теплопереноса и стационарное распределение концентрации при диффузии. К уравнению Лапласа приводят и многие другие задачи, например, задача о распределении электростатического поля в однородной непроводящей среде в отсутствие электрических зарядов. В общем случае в векторной форме уравнение Пуассона имеет вид:

где (u(x, y, z)) – искомая функция; (A(x, y, z)) , (f(x, y, z)) – некоторые функции независимых переменных. Функция А описывает «коэффициент распространения» величины u и может являться тензорной величиной в случае анизотропной среды. Функция f это функция источников – скалярная величина, показывающая плотность «скорости появления» величины u в единице объема. В качестве величин, входящих в это уравнение могут использоваться, температура, коэффициент теплопроводности, плотность тепловых источников или потенциал эл. поля, диэлектрическая проницаемость и плотность зарядов и т.д

Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Параболические уравнения¶

Параболические уравнения появляются в нестационарных задачах теплопроводности, диффузии, иногда параболические задачи получаются из гиперболических уравнений (параболическое приближение в оптике) и т. д. Уравнение теплопроводности, например, имеет вид:

В первом слагаемом коэффициенты это плотность и удельная теплоемкость, во втором слгаемом – коэффициент теплопроводности, правая часть – плотность источников тепла.

Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Гиперболические уравнения¶

Гиперболические уравнения, часто называют волновыми уравнениями, т.к. с их помощью описывается распространения волн (упругих, электро — магнитных, сдвиговых). К этому же типу уравнений относится уравнение Шредингера квантовой механики.

Видео:Видеоурок "Нахождение частных решений по виду правой части"Скачать

Видеоурок "Нахождение частных решений по виду правой части"

Начальные и граничные условия¶

Из курса высшей математики известно, что дифференциальные уравнения, как правило, имеют бесконечное множество решений. Это связано с появлением в процессе интегрирования констант, при любых значениях которых решение удовлетворяет исходному уравнению. Решение задач физики связано с нахождением зависимостей от координат и времени определенных физических величин, которые, безусловно, должны удовлетворять требованиям однозначности, конечности и непрерывности. Иными словами, любая задача физики предполагает поиск единственного решения (если оно вообще существует). Поэтому математическая формулировка физической задачи должна помимо основных дифференциальных уравнений, описывающих искомые функции, включать дополнительные уравнения (дифференциальные или алгебраические), описывающие искомые функции на границах рассматриваемой области в любой момент времени и во всех внутренних точках области в начальный момент времени. Эти дополнительные уравнения называют соответственно граничными и начальными условиями задачи. Условия, относящиеся к точкам пространства, называются граничными. Обычно это неизменные условия, накладываемые на значение функции или на ее производную (поток через границу) на границе рассматриваемой области. Начальные условия – условия о значениях физической величины в начальный момент времени. Только после задания обоих типов условий можно получить описание развития процесса во времени. Для ДУЧП редко решают задачи, когда условия внутри области заданы для различных моментов времени, т.к. это сильно усложняет и без того не простую процедуру поиска решения.

🎦 Видео

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

7.1 Краевые задачи для уравнений эллиптического типа. ВступлениеСкачать

7.1 Краевые задачи для уравнений эллиптического типа. Вступление

2. Приведение уравнений второго порядка к каноническому видуСкачать

2. Приведение уравнений второго порядка к каноническому виду

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Линейное дифференциальное уравнение Коши-ЭйлераСкачать

Линейное дифференциальное уравнение Коши-Эйлера

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

Общее и частное решение дифференциального уравненияСкачать

Общее и частное решение дифференциального уравнения

Вычислительная математика 25 Уравнения эллиптического типаСкачать

Вычислительная математика 25 Уравнения эллиптического типа

Частное решение дифференциального уравнения. 11 класс.Скачать

Частное решение дифференциального уравнения. 11 класс.

14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.
Поделиться или сохранить к себе: