В данной статье мы:
- дадим определение методу Гаусса,
- разберем алгоритм действий при решении линейных уравнений, где количество уравнений совпадает c количеством неизвестных переменных, а определитель не равен нулю;
- разберем алгоритм действий при решении СЛАУ с прямоугольной или вырожденной матрицей.
- Метод Гаусса — что это такое?
- Основные определения и обозначения
- Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)
- Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы
- Метод Гаусса – теорема, примеры решений
- Определения и обозначения
- Простейшие преобразования элементов матрицы
- Алгоритм решения методом Гаусса пошагово
- Шаг 1. Переписываем систему в виде матрицы
- Шаг 2. Преобразовываем матрицу: вторую строку в первом столбце приводим к нулю
- Шаг 3. Приводим матрицу к ступенчатому виду
- Шаг 4. Записываем эквивалентную систему
- Шаг 5. Производим проверку (решение системы обратным путём)
- Решение систем линейных уравнений методом Гаусса, в которых основная матрица невырожденная, а количество в ней неизвестных равняется количеству уравнений
- Решение систем линейных уравнений методом Гаусса, в которых основная матрица вырожденная, а количество в ней неизвестных не совпадает с количеством уравнений
- Примеры решения методом Гаусса
- Заключение
- Численные методы решения СЛАУ
- Постановка задачи
- Число обусловленности
- Численные схемы реализации метода Гаусса
- Алгоритм численного метода Гаусса
- Метод прогонки для решения СЛАУ
- Алгоритм решения систем уравнений методом прогонки
- Метод LU-разложения для решения СЛАУ
- Алгоритм метода LU-разложение
- Метод квадратных корней для решения СЛАУ
- Алгоритм метода квадратных корней
- Метод простых итераций для решения СЛАУ
- Алгоритм метода простых итераций
- Метод Зейделя для решения СЛАУ
- Алгоритм метода Зейделя
Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать
Метод Гаусса — что это такое?
Метод Гаусса — это метод, который применяется при решении систем линейных алгебраических уравнений и имеет следующие преимущества:
- отсутствует необходимость проверять систему уравнений на совместность;
- есть возможность решать системы уравнений, где:
- количество определителей совпадает с количеством неизвестных переменных;
- количество определителей не совпадает с количеством неизвестных переменных;
- определитель равен нулю.
- результат выдается при сравнительно небольшом количестве вычислительных операций.
Видео:Решение системы линейных уравнений методом ГауссаСкачать
Основные определения и обозначения
Есть система из р линейных уравнений с n неизвестными ( p может быть равно n ):
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p ,
где x 1 , x 2 , . . . . , x n — неизвестные переменные, a i j , i = 1 , 2 . . . , p , j = 1 , 2 . . . , n — числа (действительные или комплексные), b 1 , b 2 , . . . , b n — свободные члены.
Если b 1 = b 2 = . . . = b n = 0 , то такую систему линейных уравнений называют однородной, если наоборот — неоднородной.
Решение СЛАУ — совокупность значения неизвестных переменных x 1 = a 1 , x 2 = a 2 , . . . , x n = a n , при которых все уравнения системы становятся тождественными друг другу.
Совместная СЛАУ — система, для которой существует хотя бы один вариант решения. В противном случае она называется несовместной.
Определенная СЛАУ — это такая система, которая имеет единственное решение. В случае, если решений больше одного, то такая система будет называться неопределенной.
Координатный вид записи:
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p
Матричный вид записи: A X = B , где
A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a p 1 a p 2 ⋯ a p n — основная матрица СЛАУ;
X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных;
B = b 1 b 2 ⋮ b n — матрица свободных членов.
Расширенная матрица — матрица, которая получается при добавлении в качестве ( n + 1 ) столбца матрицу-столбец свободных членов и имеет обозначение Т .
T = a 11 a 12 ⋮ a 1 n b 1 a 21 a 22 ⋮ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a p 1 a p 2 ⋮ a p n b n
Вырожденная квадратная матрица А — матрица, определитель которой равняется нулю. Если определитель не равен нулю, то такая матрица, а потом называется невырожденной.
Видео:Решение системы уравнений методом ГауссаСкачать
Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)
Для начала разберемся с определениями прямого и обратного ходов метода Гаусса.
Прямой ход Гаусса — процесс последовательного исключения неизвестных.
Обратный ход Гаусса — процесс последовательного нахождения неизвестных от последнего уравнения к первому.
Алгоритм метода Гаусса:
Решаем систему из n линейных уравнений с n неизвестными переменными:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 + . . . + a 3 n x n = b 3 ⋯ a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n
Определитель матрицы не равен нулю.
- a 11 не равен нулю — всегда можно добиться этого перестановкой уравнений системы;
- исключаем переменную x 1 из всех уравнений систему, начиная со второго;
- прибавим ко второму уравнению системы первое, которое умножено на — a 21 a 11 , прибавим к третьему уравнению первое умноженное на — a 21 a 11 и т.д.
После проведенных действий матрица примет вид:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n ,
где a i j ( 1 ) = a i j + a 1 j ( — a i 1 a 11 ) , i = 2 , 3 , . . . , n , j = 2 , 3 , . . . , n , b i ( 1 ) = b i + b 1 ( — a i 1 a 11 ) , i = 2 , 3 , . . . , n .
Далее производим аналогичные действия с выделенной частью системы:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n
Считается, что a 22 ( 1 ) не равна нулю. Таким образом, приступаем к исключению неизвестной переменной x 2 из всех уравнений, начиная с третьего:
- к третьему уравнению систему прибавляем второе, которое умножено на — a ( 1 ) 42 a ( 1 ) 22 ;
- к четвертому прибавляем второе, которое умножено на — a ( 1 ) 42 a ( 1 ) 22 и т.д.
После таких манипуляций СЛАУ имеет следующий вид:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( 2 ) n 3 x 3 + . . . + a ( 2 ) n n x n = b ( 2 ) n ,
где a i j ( 2 ) = a ( 1 ) i j + a 2 j ( — a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n , j = 3 , 4 , . . . , n , b i ( 2 ) = b ( 1 ) i + b ( 1 ) 2 ( — a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n . .
Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.
Далее приступаем к исключению неизвестной x 3 , действуя по аналоги с предыдущим образцом:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( n — 1 ) n n x n = b ( n — 1 ) n
После того как система приняла такой вид, можно начать обратный ход метода Гаусса:
- вычисляем x n из последнего уравнения как x n = b n ( n — 1 ) a n n ( n — 1 ) ;
- с помощью полученного x n находим x n — 1 из предпоследнего уравнения и т.д., находим x 1 из первого уравнения.
Найти решение системы уравнений методом Гаусса:
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4
Коэффициент a 11 отличен от нуля, поэтому приступаем к прямому ходу решения, т.е. к исключению переменной x 11 из всех уравнений системы, кроме первого. Для того, чтобы это сделать, прибавляем к левой и правой частям 2-го, 3-го и 4-го уравнений левую и правую часть первого, которая умножена на — a 21 a 11 :
— 1 3 , — а 31 а 11 = — — 2 3 = 2 3 и — а 41 а 11 = — 1 3 .
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4 ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 + ( — 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = — 1 + ( — 1 3 ) ( — 2 ) — 2 x 1 — 2 x 2 — 3 x 3 + x 4 + 2 3 ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 9 + 2 3 ( — 2 ) x 1 + 5 x 2 — x 3 + 2 x 4 + ( — 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 4 + ( — 1 3 ) ( — 2 ) ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 — 4 3 x 3 + 5 3 x 4 = 14 3
Мы исключили неизвестную переменную x 1 , теперь приступаем к исключению переменной x 2 :
— a 32 ( 1 ) a 22 ( 1 ) = — — 2 3 — 5 3 = — 2 5 и а 42 ( 1 ) а 22 ( 1 ) = — 13 3 — 5 3 = 13 5 :
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 — 4 3 x 3 + 5 3 x 4 = 14 3 ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 + ( — 2 5 ) ( — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 ) = 23 3 + ( — 2 5 ) ( — 1 3 ) 13 3 x 2 — 4 3 x 3 + 5 3 x 4 + 13 5 ( — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 ) = 14 3 + 13 5 ( — 1 3 ) ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 = 19 5
Для того чтобы завершить прямой ход метода Гаусса, необходимо исключить x 3 из последнего уравнения системы — а 43 ( 2 ) а 33 ( 2 ) = — 41 5 — 19 5 = 41 19 :
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 = 19 5 ⇔
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 + 41 19 ( — 19 5 x 3 + 11 5 x 4 ) = 19 5 + 41 19 39 5 ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 56 19 x 4 = 392 19
Обратный ход метода Гаусса:
- из последнего уравнения имеем: x 4 = 392 19 56 19 = 7 ;
- из 3-го уравнения получаем: x 3 = — 5 19 ( 39 5 — 11 5 x 4 ) = — 5 19 ( 39 5 — 11 5 × 7 ) = 38 19 = 2 ;
- из 2-го: x 2 = — 3 5 ( — 1 3 — 11 3 x 4 + 4 3 x 4 ) = — 3 5 ( — 1 3 — 11 3 × 2 + 4 3 × 7 ) = — 1 ;
- из 1-го: x 1 = 1 3 ( — 2 — 2 x 2 — x 3 — x 4 ) = — 2 — 2 × ( — 1 ) — 2 — 7 3 = — 9 3 = — 3 .
Ответ: x 1 = — 3 ; x 2 = — 1 ; x 3 = 2 ; x 4 = 7
Найти решение этого же примера методом Гаусса в матричной форме записи:
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4
Расширенная матрица системы представлена в виде:
x 1 x 2 x 3 x 4 3 2 1 1 1 — 1 4 — 1 — 2 — 2 — 3 1 1 5 — 1 2 — 2 — 1 9 4
Прямой ход метода Гаусса в данном случае предполагает приведение расширенной матрицы к трапецеидальному виду при помощи элементарных преобразований. Этот процесс очень поход на процесс исключения неизвестных переменных в координатном виде.
Преобразование матрицы начинается с превращения всех элементов нулевые. Для этого к элементам 2-ой, 3-ей и 4-ой строк прибавляем соответствующие элементы 1-ой строки, которые умножены на — a 21 a 11 = — 1 3 , — a 31 a 11 = — — 2 3 = 2 3 и н а — а 41 а 11 = — 1 3 .
Дальнейшие преобразования происходит по такой схеме: все элементы во 2-ом столбце, начиная с 3-ей строки, становятся нулевыми. Такой процесс соответствует процессу исключения переменной . Для того, чтобы выполнить этой действие, необходимо к элементам 3-ей и 4-ой строк прибавить соответствующие элементы 1-ой строки матрицы, которая умножена на — а 32 ( 1 ) а 22 ( 1 ) = — 2 3 — 5 3 = — 2 5 и — а 42 ( 1 ) а 22 ( 1 ) = — 13 3 — 5 3 = 13 5 :
x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 — 2 3 — 7 3 5 3 | 23 3 0 13 3 — 4 3 5 3 | 14 3
x 1 x 2 x 3 x 4
3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 — 2 3 + ( — 2 5 ) ( — 5 3 ) — 7 3 + ( — 2 5 ) 11 3 5 3 + ( — 2 5 ) ( — 4 3 ) | 23 3 + ( — 2 5 ) ( — 1 3 ) 0 13 3 + 13 5 ( — 5 3 ) — 4 3 + 13 5 × 11 3 5 3 + 13 5 ( — 4 3 ) | 14 3 + 13 5 ( — 1 3 )
x 1 x 2 x 3 x 4
3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 — 9 5 | 19 5
Теперь исключаем переменную x 3 из последнего уравнения — прибавляем к элементам последней строки матрицы соответствующие элементы последней строки, которая умножена на а 43 ( 2 ) а 33 ( 2 ) = — 41 5 — 19 5 = 41 19 .
x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 — 9 5 | 19 5
x 1 x 2 x 3 x 4
3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 + 41 19 ( — 19 5 ) — 9 5 + 41 19 × 11 5 | 19 5 + 41 19 × 39 5
x 1 x 2 x 3 x 4
3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19
Теперь применим обратных ход метода. В матричной форме записи такое преобразование матрицы, чтобы матрица, которая отмечена цветом на изображении:
x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19
стала диагональной, т.е. приняла следующий вид:
x 1 x 2 x 3 x 4 3 0 0 0 | а 1 0 — 5 3 0 0 | а 2 0 0 — 19 5 0 | а 3 0 0 0 56 19 | 392 19 , где а 1 , а 2 , а 3 — некоторые числа.
Такие преобразования выступают аналогом прямому ходу, только преобразования выполняются не от 1-ой строки уравнения, а от последней. Прибавляем к элементам 3-ей, 2-ой и 1-ой строк соответствующие элементы последней строки, которая умножена на
— 11 5 56 19 = — 209 280 , н а — — 4 3 56 19 = 19 42 и н а — 1 56 19 = 19 56 .
x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 1 1 + ( — 19 56 ) 56 19 | — 2 + ( — 19 56 ) 392 19 0 — 5 3 11 3 — 4 3 + 19 42 × 56 19 | — 1 3 + 19 42 × 392 19 0 0 — 19 5 11 5 + ( — 209 280 ) 56 19 | 39 5 + ( — 209 280 ) 392 19 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 1 0 | — 9 0 — 5 3 11 3 0 | 9 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
Далее прибавляем к элементам 2-ой и 1-ой строк соответствующие элементы 3-ей строки, которые умножены на
— 11 3 — 19 5 = 55 57 и н а — 1 — 19 5 = 5 19 .
x 1 x 2 x 3 x 4 3 2 1 0 | — 9 0 — 5 3 11 3 0 | 9 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 1 + 5 19 ( — 19 5 ) 0 | — 9 + 5 19 ( — 38 5 ) 0 — 5 3 11 3 + 55 57 ( — 19 5 ) 0 | 9 + 55 57 ( — 38 5 ) 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 1 0 | — 11 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
На последнем этапе прибавляем элементы 2-ой строки к соответствующим элементам 1-ой строки, которые умножены на — 2 — 5 3 = 6 5 .
x 1 x 2 x 3 x 4 3 2 1 0 | — 11 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 + 6 5 ( — 5 3 ) 0 0 | — 11 + 6 5 × 5 3 ) 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 0 0 0 | — 9 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
Полученная матрица соответствует системе уравнений
3 x 1 = — 9 — 5 3 x 2 = 5 3 — 19 5 x 3 = — 38 5 56 19 x 4 = 392 19 , откуда находим неизвестные переменные.
Ответ: x 1 = — 3 , x 2 = — 1 , x 3 = 2 , x 4 = 7 .
Видео:12. Решение систем линейных уравнений методом ГауссаСкачать
Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы
Если основная матрица квадратная или прямоугольная, то системы уравнений могут иметь единственное решение, могут не иметь решений, а могут иметь бесконечное множество решений.
Из данного раздела мы узнаем, как с помощью метода Гаусса определить совместность или несовместность СЛАУ, а также, в случае совместности, определить количество решений для системы.
В принципе, метод исключения неизвестных при таких СЛАУ остается таким же, однако есть несколько моментов, на которых необходимо заострить внимание.
На некоторых этапах исключения неизвестных, некоторые уравнения обращаются в тождества 0=0. В таком случае, уравнения можно смело убрать из системы и продолжить прямой ход метода Гаусса.
Если мы исключаем из 2-го и 3-го уравнения x 1 , то ситуация оказывается следующей:
x 1 + 2 x 2 — x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 — 2 x 3 + 6 x 4 = 14 x — x + 3 x + x = — 1 ⇔
x 1 + 2 x 2 — x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 — 2 x 3 + 6 x 4 + ( — 2 ) ( x 1 + 2 x 2 — x 3 + 3 x 4 ) = 14 + ( — 2 ) × 7 x — x + 3 x + x + ( — 1 ) ( x 1 + 2 x 2 — x 3 + 3 x 4 ) = — 1 + ( — 1 ) × 7 ⇔
⇔ x 1 + 2 x 2 — x 3 + 3 x 4 = 7 0 = 0 — 3 x 2 + 4 x 3 — 2 x 4 = — 8
Из этого следует, что 2-ое уравнение можно смело удалять из системы и продолжать решение.
Если мы проводим прямой ход метода Гаусса, то одно или несколько уравнений может принять вид — некоторое число, которое отлично от нуля.
Это свидетельствует о том, что уравнение, обратившееся в равенство 0 = λ , не может обратиться в равенство ни при каких любых значениях переменных. Проще говоря, такая система несовместна (не имеет решения).
- В случае если при проведении прямого хода метода Гаусса одно или несколько уравнений принимают вид 0 = λ , где λ — некоторое число, которое отлично от нуля, то система несовместна.
- Если же в конце прямого хода метода Гаусса получается система, число уравнений которой совпадает с количеством неизвестных, то такая система совместна и определена: имеет единственное решение, которое вычисляется обратным ходом метода Гаусса.
- Если при завершении прямого хода метода Гаусса число уравнений в системе оказывается меньше количества неизвестных, то такая система совместна и имеет бесконечно количество решений, которые вычисляются при обратном ходе метода Гаусса.
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Метод Гаусса – теорема, примеры решений
Метод Гаусса – идеальный вариант для решения систем линейных алгебраических уравнений (далее СЛАУ). Благодаря методу Гаусса можно последовательно исключать неизвестные путём элементарных преобразований. Метод Гаусса – это классический метод решения СЛАУ, который и рассмотрен ниже.
Карл Фридрих Гаусс – немецкий математик, основатель одноименного метода решения СЛАУ
Карл Фридрих Гаусс – был известным великим математиком и его в своё время признали «королём математики». Хотя название «метод Гаусса» является общепринятым, Гаусс не является его автором: метод Гаусса был известен задолго до него. Первое его описание имеется в китайском трактате «Математика в девяти книгах», который составлен между II в. до н. э. и I в. н. э. и представляет собой компиляцию более ранних трудов, написанных примерно в X в. до н. э.
Метод Гаусса – последовательное исключение неизвестных. Этот метод используется для решения квадратных систем линейных алгебраических уравнений. Хотя уравнения при помощи метода Гаусса решаются легко, но всё же студенты часто не могут найти правильное решение, так как путаются в знаках (плюсы и минусы). Поэтому во время решения СЛАУ необходимо быть предельно внимательным и только тогда можно легко, быстро и правильно решить даже самое сложное уравнение.
У систем линейных алгебраических уравнений есть несколько преимуществ: уравнение не обязательно заранее на совместность; можно решать такие системы уравнений, в которых число уравнений не совпадает с количеством неизвестных переменных или определитель основной матрицы равняется нулю; есть возможность при помощи метода Гаусса приводить к результату при сравнительно небольшом количестве вычислительных операций.
Видео:метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУСкачать
Определения и обозначения
Как уже говорилось, метод Гаусса вызывает у студентов некоторые сложности. Однако, если выучить методику и алгоритм решения, сразу же приходит понимание в тонкостях решения.
Для начала систематизируем знания о системах линейных уравнений.
СЛАУ в зависимости от её элементов может иметь:
- Одно решение;
- много решений;
- совсем не иметь решений.
В первых двух случаях СЛАУ называется совместимой, а в третьем случае – несовместима. Если система имеет одно решение, она называется определённой, а если решений больше одного, тогда система называется неопределённой.
Метод Крамера и матричный способ не подходят для решения уравнений, если система имеет бесконечное множество решений. Вот поэтому нам и нужен метод Гаусса, который поможет нам в любом случае найти правильное решение. К элементарным преобразованиям относятся:
- перемена мест уравнений системы;
- почленное умножение обеих частей на одно из уравнений на некоторое число, так, чтобы коэффициенты при первой переменной в двух уравнениях были противоположными числами;
- сложение к обеим частям одного из уравнений определённых частей другого уравнения.
Итак, когда мы знаем основные правила и обозначения, можно приступать к решению.
Теперь рассмотрим, как решаются системы методом Гаусса на простом примере:
где а, в, с – заданные коэффициенты, d – заданные свободные члены, x, y, z – неизвестные. Коэффициенты и свободные члены уравнения можно называть его элементами.
Если = = = , тогда система линейных алгебраических уравнений называется однородной, в другом случае – неоднородной.
Множественные числа , , называются решением СЛАУ, если при подстановке , , в СЛАУ получим числовые тождества.
Система, которую мы написали выше имеет координатную форму. Если её переделать в матричную форму, тогда система будет выглядеть так:
– это основная матрица СЛАУ.
– матрица столбец неизвестных переменных.
– матрица столбец свободных членов.
Если к основной матрице добавить в качестве – ого столбца матрицу-столбец свободных членов, тогда получится расширенная матрица систем линейных уравнений. Как правило, расширенная матрица обозначается буквой , а столбец свободных членов желательно отделить вертикальной линией от остальных столбцов. То есть, расширенная матрица выглядит так:
Если квадратная матрица равна нулю, она называется вырожденная, а если – матрица невырожденная.
Если с системой уравнений:
Произвести такие действия:
- умножать обе части любого из уравнений на произвольное и отличное от нуля число ;
- менять местами уравнения;
- к обеим частям любого из уравнений прибавить определённые части другого уравнения, которые умножаются на произвольное число ,
тогда получается эквивалентная система, у которой такое же решение или нет решений совсем.
Теперь можно перейти непосредственно к методу Гаусса.
Нужна помощь в написании работы?
Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.
Видео:Численные методы. Лекция 1. Решение систем линейных уравнений. Метод ГауссаСкачать
Простейшие преобразования элементов матрицы
Мы рассмотрели основные определения и уже понимаем, чем нам поможет метод Гаусса в решении системы. Теперь давайте рассмотрим простую систему уравнений. Для этого возьмём самое обычное уравнение, где и используем решение методом Гаусса:
Из уравнения запишем расширенную матрицу:
Из данной матрицы видно, по какому принципу она записана. Вертикальную черту не обязательно ставить, но просто так удобнее решать систему.
На матрице, которая написана выше рассмотрим, какие существуют элементарные преобразования:
1. В матрице строки можно переставлять местами. Например, в нашей матрице спокойно можно переставить первую и вторую строки:
.
2. Если в матрице имеются (или появились) пропорциональные строки (одинаковые), тогда необходимо оставить всего лишь одну строку, а остальные убрать (удалить).
3. Если в ходе преобразований в матрице появилась строка, где находятся одни нули, тогда такую строку тоже нужно удалять.
4. Строку матрицы можно умножать (делить) на любое число, которое отличное от нуля. Такое действие желательно проделывать, так как в будущем проще преобразовывать матрицу.
5. Сейчас рассмотрим преобразование, которое больше всего вызывает затруднение у студентов. Для этого возьмём изначальную нашу матрицу:
Для удобства умножаем первую строку на (-3):
Теперь ко второй строке прибавляем первую строку, которую умножали на -3. Вот что у нас получается:
В итоге получилось такое преобразование:
Теперь для проверки можно разделить все коэффициенты первой строки на те же и вот что получается:
В матрице верхняя строка преобразовалась:
Первую строку делим на и преобразовалась нижняя строка:
И верхнюю строку поделили на то же самое число :
Как вы можете убедиться, в итоге строка, которую мы прибавляли ни капельки не изменилась, а вот вторая строка поменялась. ВСЕГДА меняется только та строка, к которой прибавляются коэффициенты.
Мы расписали в таких подробностях, чтобы было вам понятно, откуда какая цифра взялась. На практике, например, на контрольной или экзамене матрица так подробно не расписывается. Как правило, в задании решение матрицы оформляется так:
.
Видео:Метод Гаусса решения систем линейных уравненийСкачать
Алгоритм решения методом Гаусса пошагово
После того, как мы рассмотрели простейшие преобразования, в которых на помощь пришёл метод Гаусса, можем вернуться к нашей системе, которую уже разложили по полочкам и пошагово распишем:
Шаг 1. Переписываем систему в виде матрицы
Шаг 2. Преобразовываем матрицу: вторую строку в первом столбце приводим к нулю
Как мы привели вторую строку в первом столбце к нулю описано выше. Напомним, что первую строку умножали на и вторую строку прибавили к первой , умноженной на .
Шаг 3. Приводим матрицу к ступенчатому виду
Теперь вторую строку можно поделить на 2 и получается:
Верхнюю строку делим на и приводим матрицу к ступенчатому виду:
Когда оформляют задание, так и отчёркивают простым карандашом для упрощения работы, а также обводят те числа, которые стоят на “ступеньках”. Хотя в учебниках и другой литературе нет такого понятия, как ступенчатый вид. Как правило, математики такой вид называют трапециевидным или треугольным.
Шаг 4. Записываем эквивалентную систему
После наших элементарных преобразований получилась эквивалентная система:
Шаг 5. Производим проверку (решение системы обратным путём)
Теперь систему нужно решить в обратном направлении, то есть обратным ходом, начиная с последней строки.:
находим : ,
,
.
После находим :
,
.
.
Как видим, уравнение решено правильно, так как ответы в системе совпадают.
Видео:Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать
Решение систем линейных уравнений методом Гаусса, в которых основная матрица невырожденная, а количество в ней неизвестных равняется количеству уравнений
Как мы уже упоминали, невырожденная матрица бывает тогда, когда . Разберём систему уравнений невырожденной матрицы, где уравнений по количеству столько же, сколько и неизвестных. Эту систему уравнений решим другим способом.
Дана система уравнений:
Для начала нужно решить первое уравнение системы относительно неизвестной переменной . Далее подставим полученное выражение сначала во второе уравнение, а затем в третье, чтобы исключить из них эту переменную.
Теперь переходим ко второму уравнению системы относительно и полученный результат подставим в третье уравнение.. Это нужно для того, чтобы исключить неизвестную переменную :
Из последнего, третьего уравнения мы видим, что . Из второго уравнения находим . И последнее, находим первое уравнение .
Итак, мы нашли все три неизвестных при помощи последовательного исключения. Такой процесс называют – прямой ход метода Гаусса. Когда последовательно находятся неизвестные переменные, начиная с последнего уравнения, называется обратным ходом метода Гаусса.
Когда выражается через и в первом уравнении, а затем подставляется полученное выражение во второе или третье уравнения, тогда, чтобы привести в к такому же результату, необходимо проделать такие действия:
- берём второе уравнение и к его левой и правой частям прибавляем определённые части из первого уравнения, которые умножаются на ,
- берём третье уравнение и к его левой и правой частям прибавляем определённые части из первого уравнения, которые умножаются на .
И действительно, благодаря такой процедуре у нас есть возможность исключать неизвестную переменную со второго и третьего уравнения системы:
Возникают нюансы с исключением неизвестных переменных тогда, когда в уравнении системы нет каких-либо неизвестных переменных. Рассмотрим такую систему:
В этой системе в первом уравнении нет переменной и поэтому у нас нет возможности решить первое уравнение системы относительно , чтобы исключить данную переменную из остальных уравнений. В таком случае выход есть. Нужно всего лишь уравнения переставить местами.
Так как мы описываем уравнения системы, в которых определитель основных матриц отличен от нуля, тогда всегда есть такое уравнение, в котором есть необходимая нам переменная и это уравнение мы можем поставить туда, куда нам нужно.
В примере, который мы рассматриваем, достаточно всего лишь поменять местами первое и второе уравнение.
Теперь мы можем спокойно разрешить первое уравнение относительно переменной и убрать (исключить) из остальных уравнений в системе. Вот и весь принцип работы с такими, на первый взгляд, сложными системами.
Видео:Решение системы уравнений методом Гаусса 4x4Скачать
Решение систем линейных уравнений методом Гаусса, в которых основная матрица вырожденная, а количество в ней неизвестных не совпадает с количеством уравнений
Метод Гаусса помогает решать системы уравнений, у которых основная матрица прямоугольная или квадратная, но основная вырожденная матрица может совсем не иметь решений, иметь бесконечное множество решений или иметь всего лишь одно единственное решение.
Рассмотрим, как при помощи метода Гаусса устанавливается совместность или несовместность систем линейных уравнений. В случае, если есть совместность определим все решения или одно решение.
В принципе, исключать неизвестные переменные можно точно так, как описано выше. Однако, есть некоторые непонятные ситуации, которые могут возникнуть в ходе решения:
1. На некоторых этапах в момент исключения неизвестных переменных некоторые уравнения могут обратиться в тождества . В данном случае такие уравнения лишние в системе и их можно смело полностью убирать, а затем продолжать решать уравнение методом Гаусса.
Например, вам попалась подобная система:
У нас получается такая ситуация
Как видим, второе уравнение . Соответственно, данное уравнение мы можем из системы удалить, так как оно без надобности.
Дальше можно продолжать решение системы линейных алгебраических уравнений уравнений традиционным методом Гаусса.
2. При решении уравнений прямым ходом методом Гаусса могут принять не только одно, но и несколько уравнений такой вид: , где – число, которое отличное от нуля. Это говорит о том, что такое уравнение никогда не сможет превратиться в тождество даже при любых значениях неизвестных переменных. То есть, можно выразить по-другому. Если уравнение приняло вид, значит система несовместна, то есть, не имеет решений. Рассмотрим на примере:
Для начала необходимо исключить неизвестную переменную из всех уравнений данной системы, начиная со второго уравнения. Для этого нужно прибавить к левой и правой частям второго, третьего, четвёртого уравнения части (левую и правую) первого уравнения, которые соответственно, умножаются на (-1), (-2), (-3). Получается:
В третьем уравнении получилось равенство . Оно не подходит ни для каких значений неизвестных переменных , и , и поэтому, у данной системы нет решений. То есть, говорится, что система не имеет решений.
3. Допустим, что при выполнении прямого хода методом Гаусса нам нужно исключить неизвестную переменную , и ранее, на каком-то этапе у нас уже исключалась вместе с переменной . Как вы поступите в таком случае? При таком положении нам нужно перейти к исключению переменной . Если же уже исключались, тогда переходим к , и т. д.
Рассмотрим систему уравнений на таком этапе, когда уже исключилась переменная :
Такая система уравнений после преобразования выглядит так:
Вы наверное уже обратили внимание, что вместе с исключились и . Поэтому решение методом Гаусса продолжаем исключением переменной из всех уравнений системы, а начнём мы с третьего уравнения:
Чтобы завершить уравнение прямым ходом метода Гаусса, необходимо исключить последнюю неизвестную переменную из последнего уравнения:
Допусти, что система уравнений стала:
В этой системе нет ни одного уравнения, которое бы сводилось к . В данном случае можно было бы говорить о несовместности системы. Дальше непонятно, что же делать? Выход есть всегда. Для начала нужно выписать все неизвестные, которые стоят на первом месте в системе:
В нашем примере это , и . В левой части системы оставим только неизвестные, которые выделены зелёным квадратом а в правую перенесём известные числа, но с противоположным знаком. Посмотрите на примере, как это выглядит:
Можно придать неизвестным переменным с правой части уравнений свободные (произвольные) значения: , , , где , , – произвольные числа.
Теперь в правых частях уравнений нашей системы имеются числа и можно приступать к обратному ходу решения методом Гаусса.
В последнем уравнении системы получилось: , и теперь мы легко найдём решение в предпоследнем уравнении: , а из первого уравнения получаем:
= =
В итоге, получился результат, который можно и записать.
Ответ
,
,
,
,
,
.
Видео:Линейная алгебра, 9 урок, Метод ГауссаСкачать
Примеры решения методом Гаусса
Выше мы подробно расписали решение системы методом Гаусса. Чтобы закрепить материал, решим несколько примеров, в которых опять нам поможет метод Гаусса. Соответственно, начнём с самой простой системы.
Задача
Решить систему линейных алгебраических уравнений методом Гаусса:
Решение
Выписываем матрицу, куда добавляем столбец свободных членов:
Прежде всего мы смотрим на элемент, который находится в матрице в левом верхнем углу (первая строка, первый столбец). Для наглядности выделим цифру зелёным квадратом. На этом месте практически всегда стоит единица:
Так как мы должны использовать подходящее элементарное преобразование строк и сделать так, чтобы элемент, который находится в матрице под выделенной цифрой превратился в . Для этого можно ко второй строке прибавить первую строку и умножить на .Однако, не сильно хочется работать с дробями, поэтому давайте постараемся этого избежать. Для этого нужно вторую строку умножить на (разрешающий элемент данного шага).
Соответственно, первая строка остаётся неизменной, а вторая поменяется:
Подбираем такое элементарное преобразование строк, чтобы во второй строке в первом столбце образовался . Для этого первую строку нужно умножить на и только после этого ко второй строке прибавить изменённую после умножения на вторую строку. Вот что получилось:
. Теперь прибавляем со второй строки первую строку . У нас получился , который записываем во вторую строку в первый столбец. Также решаем и остальные элементы матрицы. Вот что у нас получилось:
Как всегда у нас первая строка осталась без изменений, а вторая с новыми числами.
Итак, у нас получился ступенчатый вид матрицы:
Записываем новую систему уравнений:
Для проверки решаем систему обратным ходом. Для этого находим сначала :
Так как найден, находим :
.
Подставляем в изначальную нашу систему уравнений найденные и :
и .
Как видите из решения, система уравнений решена верно. Запишем ответ.
Ответ
Выше мы решали систему уравнений в двумя неизвестными, а теперь рассмотрим систему уравнений с тремя неизвестными.
Задача
Решить систему уравнений методом Гаусса:
Решение
Составляем матрицу, куда вписываем и свободные члены:
Что нам надо? Чтобы вместо цифры 2 появился 0. Для этого подбираем ближайшее число. Например, можно взять цифру -2 и на неё перемножить все элементы первой строки. Значит, умножаем , а потом прибавляем, при этом задействуем вторую строку: . В итоге у нас получился нуль, который записываем во вторую строку в первый столбец. Затем , и . Аналогично, и . И умножаем свободный член . Так и запишем следующую матрицу. Не забывайте, что первая строка остаётся без изменений:
Дальше необходимо проделать те же самые действия по отношению к третьей строке. То есть, первую строку нужно умножать не на (-2), а на цифру 3, так как и в третьей строке нужно коэффициенты привести у нулю. Также первую строку умножаем на 3 и прибавляем третью строку. Получается так:
Теперь нужно обнулить элемент 7, который стоит в третьей строке во втором столбце. Для этого выбираем цифру (-7) и проделываем те же действия. Однако, необходимо задействовать вторую строку. То есть, вторую строку умножаем на (-7) и прибавляем с третьей строкой. Итак, . Записываем результат в третью строку. Такие же действия проделываем и с остальными элементами. Получается новая матрица:
В результате получилась ступенчатая система уравнений:
Сначала находим : ,
.
Обратный ход:
Итак, уравнение системы решено верно.
Ответ
,
,
.
Система с четырьмя неизвестными более сложная, так как в ней легко запутаться. Попробуем решить такую систему уравнений.
Задача
Решите систему уравнений методом Гаусса:
Решение
В уравнении , то есть – ведущий член и пусть ≠ 0
Из данного уравнения составим расширенную матрицу:
Теперь нужно умножить последние три строки (вторую, третью и четвёртую) на: , , . Затем прибавим полученный результат ко второй, третьей и четвёртой строкам исключаем переменную из каждой строки, начиная не с первой, а не со второй. Посмотрите, как изменилась наша новая матрица и в теперь стоит 0.
Поменяем вторую и третью строку местами и получим:
Получилось так, что = b и тогда, умножая вторую строку на (-7/4) и результат данной строки, прибавляя к четвёртой, можно исключить переменную из третьей и четвёртой строк:
Получилась такая матрица:
Также, учитывая, что = , умножим третью строку на: 13,5/8 = 27/16, и, полученный результат прибавим к четвёртой, чтобы исключить переменную и получаем новую систему уравнений:
Теперь необходимо решить уравнение обратным ходом и найдём из последнего, четвёртого уравнения ,
из третьего: = = =
второе уравнение находим: = = = 2,
из первого уравнения: = .
Значит, решение системы такое: (1, 2, -1, -2).
Ответ
,
,
,
.
Добавим ещё несколько примеров для закрепления материла, но без такого подробного описания, как предыдущие системы уравнений.
Задача
Решить систему уравнений методом Гаусса:
Решение
Записываем расширенную матрицу системы:
Сначала смотрим на левое верхнее число:
Как выше уже было сказано, на этом месте должна стоять единица, но не обязательно. Производим такие действия: первую строку умножаем на -3, а потом ко второй строке прибавляем первую:
Производим следующие действия: первую строку умножаем на -1. Затем к третьей строки прибавляем вторую:
Теперь вторую строку умножаем на 1, а затем к третьей строке прибавляем вторую:
Получился ступенчатый вид уравнения:
,
,
,
,
.
.
Ответ
,
,
.
Видео:решение системы уравнений методом ГауссаСкачать
Заключение
Итак, вы видите, что метод Гаусса – интересный и простой способ решения систем линейных алгебраических уравнений. Путём элементарных преобразований нужно из системы исключать неизвестные переменные, чтобы систему превратить в ступенчатый вид. Данный метод удобен тем, что всегда можно проверить, правильно ли решено уравнение. Нужно просто подставить найденные неизвестные в изначальную систему уравнений.
Если элементы определителя не равняются нулю, тогда лучше обратиться к методу Крамера, а если же элементы нулевые, тогда такие системы очень удобно решать благодаря методу Гаусса.
Предлагаем ещё почитать учебники, в которых также описаны решения систем методом Гаусса.
Литература для общего развития:
Видео:6 способов в одном видеоСкачать
Численные методы решения СЛАУ
Видео:Метод Гаусса за 7 минут. Система линейных уравненийСкачать
Постановка задачи
Прикладные задачи, характерные для проектирования современных объектов новой техники, часто сводятся к многомерным в общем случае нелинейным уравнениям, которые решаются методом линеаризации, т.е. сведением нелинейных уравнений к линейным. В общем случае система [math]n[/math] уравнений с [math]n[/math] неизвестными записывается в виде
где [math]f_1,f_2,ldots,f_n[/math] — функции [math]n[/math] переменных, нелинейные или линейные ( [math]x_i[/math] в функции [math]f_i[/math] входят в первых или частично в нулевых степенях). Здесь рассматривается частный случай задачи (1.1) — линейная неоднородная задача для систем линейных алгебраических уравнений (СЛАУ), которая сокращенно записывается в виде
где [math]A=(a_in mathbb^[/math] — действительная матрица размера [math](ntimes n),
i,,j[/math] — переменные, соответствующие номерам строк и столбцов (целые числа); [math]b=(b_1,ldots,b_n)^Tin mathbb^n[/math] — вектор-столбец размера [math](ntimes1),
x=(x_1,ldots,x_n)^Tin mathbb^n[/math] — вектор-столбец неизвестных, [math]mathbb^n[/math] — n-мерное евклидово пространство, верхний индекс [math]T[/math] здесь и далее обозначает операцию транспонирования. Требуется найти решение [math]x_= (x_,ldots, x_)^Tin mathbb^n[/math] системы (1.2), подстановка которого в (1.2) приводит к верному равенству [math]Ax_=b[/math] .
1. Из линейной алгебры известно, что решение задачи (1.2) существует и единственно, если детерминант матрицы [math]A[/math] отличен от нуля, т.е. [math]det A equiv |A|ne0[/math] ( [math]A[/math] — невырожденная матрица, называемая также неособенной).
2. Поставленная задача часто именуется первой задачей линейной алгебры. Подчеркнем, что в ней входными (исходными) данными являются матрица [math]A[/math] и вектор [math]b[/math] , а выходными — вектор [math]x[/math] .
3. Задача (1.2) имеет следующие особенности:
а) задача линейная (все переменные [math]x_[/math] , входящие в систему, имеют степени не выше первой) и неоднородная [math](bne0)[/math] ;
б) количество уравнений равно количеству неизвестных (система замкнута);
в) количество уравнений для некоторых практических задач велико: kcdot10^3
г) при больших [math]n[/math] использовать формулу [math]x=A^b[/math] не рекомендуется в силу трудностей нахождения обратной матрицы.
4. Важнейшим признаком любой математической задачи, который надо в первую очередь принимать во внимание при ее анализе и выборе метода решения, является ее линейность или нелинейность. Это связано с тем, что нелинейные задачи с вычислительной точки зрения являются наиболее трудными. Так, нелинейная задача (1.1) является достаточно сложной при числе уравнений [math]n[/math] , пропорциональном [math]10^2[/math] , а линейная задача — при [math]n[/math] , пропорциональном [math]10^6[/math] .
Видео:Базисные решения систем линейных уравнений (03)Скачать
Число обусловленности
Характер задачи и точность получаемого решения в большой степени зависят от ее обусловленности, являющейся важнейшим математическим понятием, влияющим на выбор метода ее решения. Поясним это понятие на примере двумерной задачи: [math]begina_x_1+ a_x_2=b_1,\ a_x_1+ a_x_2=b_2.end[/math] . Точным решением этой задачи является вектор [math]x_= (x_, x_)^T[/math] , компоненты которого определяются координатами точки пересечения двух прямых, соответствующих уравнениям [math]a_x_1+ a_x_2=b_1,[/math] [math]a_x_1+ a_x_2=b_2[/math] (рис. 1.1,а).
На рис. 1.1,б применительно к трем наборам входных данных, заданных с некоторыми погрешностями и соответствующих различным системам линейных уравнений, иллюстрируется характер обусловленности системы. Если [math]det A[/math] существенно отличен от нуля, то точка пересечения пунктирных прямых, смещенных относительно сплошных прямых из-за погрешностей задания [math]A[/math] и [math]b[/math] , сдвигается несильно. Это свидетельствует о хорошей обусловленности системы. При [math]det Aapprox0[/math] небольшие погрешности в коэффициентах могут привести к большим погрешностям в решении (плохо обусловленная задача), поскольку прямые близки к параллельным. При [math]det A=0[/math] прямые параллельны или они совпадают, и тогда решение задачи не существует или оно не единственно.
Более строго обусловленность задачи характеризуется числом обусловленности [math]nu(A)= |A|cdot |A^|[/math] , где [math]|A|[/math] — норма матрицы [math]A[/math] , а [math]|A^|[/math] — норма обратной матрицы. Чем больше это число, тем хуже обусловленность системы (при [math]nu(A)approx 10^3div 10^4[/math] система линейных алгебраических уравнений плохо обусловлена). В качестве нормы матрицы может быть принято число, являющееся максимальным из сумм (по модулю) элементов всех строк этой матрицы. Подчеркнем, что реализация хорошей или плохой обусловленности в корректной и некорректной задачах напрямую связана с вытекающей отсюда численной устойчивостью или неустойчивостью. При этом для решения некорректных задач обычно применяются специальные методы или математические преобразования этих задач к корректным.
В численном анализе используются два класса численных методов решения систем линейных алгебраических уравнений:
1. Прямые методы , позволяющие найти решение за определенное число операций. К прямым методам относятся: метод Гаусса и его модификации (в том числе метод прогонки), метод [math]LU[/math] — разложения и др.
2. Итерационные методы , основанные на использовании повторяющегося (циклического) процесса и позволяющие получить решение в результате последовательных приближений. Операции, входящие в повторяющийся процесс, составляют итерацию. К итерационным методам относятся: метод простых итераций, метод Зейделя и др.
Видео:Решение систем линейных уравнений, урок 4/5. Метод ГауссаСкачать
Численные схемы реализации метода Гаусса
Рассмотрим частный случай решения СЛАУ — задачу нахождения решения системы линейных алгебраических уравнений
b=beginb_1\vdots\b_nend[/math] столбцы размеров [math]ntimes 1[/math] . Это означает, что число уравнений совпадает с числом неизвестных, т.е. [math]m=n[/math] . Предполагается, что выполняется условие [math]detequiv|A|ne0[/math] . Тогда по теореме 5.1 решение системы (10.1) существует и единственно.
Согласно изложенному ранее, метод Гаусса содержит две совокупности операций, которые условно названы прямым ходом и обратным ходом.
Прямой ход состоит в исключении элементов, расположенных ниже элементов, соответствующих главной диагонали матрицы [math]A[/math] . При этом матрица [math]A[/math] с помощью элементарных преобразований преобразуется к верхней треугольной, а расширенная матрица [math](Amid b)[/math] — к трапециевидной:
Заметим, что в отличие от общего подхода здесь не требуется приводить расширенную матрицу к упрощенному виду. Считается, что для реализации эффективных численных процедур достаточно свести проблему к решению системы с треугольной матрицей коэффициентов.
Обратный ход состоит в решении системы [math]widetildex= widetilde[/math] .
Видео:Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать
Алгоритм численного метода Гаусса
а) Положить номер шага [math]k=1[/math] . Переобозначить все элементы расширенной матрицы [math](Amid b)[/math] через [math]a_^,[/math] [math]i=1,ldots,n;[/math] [math]j=1,ldots,n+1[/math] ;
б) Выбрать ведущий элемент одним из двух способов.
Первый способ (схема единственного деления). Выбрать в качестве ведущего элемента [math]a_^ne0[/math] .
Второй способ (схема с выбором ведущего элемента). На k-м шаге сначала переставить [math](n-k+1)[/math] оставшихся уравнений так, чтобы наибольший по модулю коэффициент при переменной [math]x_k[/math] попал на главную диагональ, а затем выбрать в качестве ведущего элемента [math]a_^[/math] .
в) каждый элемент строки, в которой находится ведущий элемент, поделить на него:
г) элементы строк, находящихся ниже строки с ведущим элементом, подсчитать по правилу прямоугольника, схематически показанного на рис. 10.1 (исключить элементы, стоящие ниже ведущего элемента).
Поясним алгоритм исключения на рис. 10.1. Пусть рассчитывается значение [math]a_^[/math] на k-м шаге. Следует соединить элемент [math]a_^[/math] с ведущим элементом [math]a_^[/math] . Получена одна из диагоналей прямоугольника. Вторую диагональ образует соединение элементов [math]a_^[/math] и [math]a_^[/math] . Для нахождения значения [math]a_^[/math] из его текущего значения [math]a_^[/math] вычитается произведение элементов [math]a_^[/math] и [math]a_^[/math] , деленное на ведущий элемент;
д) если [math]kne n[/math] , то перейти к пункту «б», где вместо [math]k[/math] положить [math]k+1[/math] .
Если [math]k=n[/math] , завершить прямой ход. Получена расширенная трапециевидная матрица из элементов [math]a_^[/math] , соответствующая [math]bigl(widetildemid widetildebigr)[/math] .
1. Схема единственного деления имеет ограничение, связанное с тем, что ведущие элементы должны быть отличны от нуля. Одновременно желательно, чтобы они не были малыми по модулю, поскольку тогда погрешности при соответствующем делении будут большими. С этой точки зрения схема с выбором ведущего элемента является более предпочтительной.
2. По окончании прямого хода может быть вычислен определитель матрицы [math]A[/math] путем перемножения ведущих элементов.
3. В расчетных формулах все элементы расширенной матрицы обозначаются одним символом [math]a[/math] , так как они преобразуются по единым правилам.
4. Понятие нормы квадратной невырожденной матрицы позволяет исследовать влияние малых изменений правой части и элементов матрицы на решение систем линейных уравнений. Положительное число [math]A=|A|cdot|A^|[/math] называется числом обусловленности матрицы . Существует и более общее определение числа обусловленности, применимое к вырожденным матрицам: [math]operatornameA= sup_frac: inf_frac[/math] . Чем больше число обусловленности, тем сильнее ошибка в исходных данных сказывается на решении линейной системы. Если число [math]operatornameA[/math] велико, система считается плохо обусловленной, т.е. решение системы может существенно изменяться даже при малых изменениях элементов матрицы [math]A[/math] и столбца свободных членов [math]b[/math] .
Пример 10.3. Найти число обусловленности матрицы системы [math]beginx_1+10x_2=b_1,\ 100x_1+1001x_2=1101. end[/math] Решить систему при [math]b_1=11[/math] и [math]b_1=11,!01[/math] , сравнить близость полученных решений.
По формуле (4.2) для матрицы [math]A=begin 1&10\ 100&1001 end[/math] получаем [math]A^=begin 1001&-10\ -1000&1 end[/math] . Тогда
В результате [math]operatornameA= |A|cdot|A^|=1101cdot1011= 1’113’111[/math] . Очевидно, число обусловленности матрицы системы достаточно велико, поэтому система является плохо обусловленной.
При [math]b_1=11[/math] система имеет единственное решение [math]x_1=1,
x_2=1[/math] , а при [math]b_1=11,!01[/math] , единственное решение [math]x_1=11,!01,
x_2=0[/math] . Несмотря на малое различие в исходных данных: [math]Delta b_1=|11-11,!01|=0,!01[/math] , полученные решения отличаются существенно: [math]Delta x=left| begin1\1 end- begin 11,!01\0 end right|_1=10,!01[/math] , т.е. погрешность [math]Delta x[/math] решения в 1001 раз больше погрешности [math]Delta b_1[/math] правой части системы.
Таким образом, решение плохо обусловленной системы может существенно изменяться даже при малых изменениях исходных данных.
Пример 10.4. Решить систему линейных алгебраических уравнений методом Гаусса (схема единственного деления)
1. Прямой ход. Запишем расширенную матрицу и реализуем прямой ход с помощью описанных преобразований:
Согласно пункту 2 замечаний 10.2 определитель матрицы системы равен произведению ведущих элементов: [math]det=2cdotfraccdot26=26[/math] .
Решая эту систему, начиная с последнего уравнения, находим: [math]x_3=3,
Пример 10.5. Методом Гаусса с выбором ведущего элемента по столбцам решить систему:
1. Прямой ход. Реализуем поиск ведущего элемента по правилу: на k-м шаге переставляются [math](n-k+1)[/math] оставшихся уравнений так, чтобы наибольший по модулю коэффициент при [math]x_k[/math] попал на главную диагональ:
Согласно пункту 2 замечаний 10.2 определитель матрицы системы равен произведению ведущих элементов:
Решая ее, последовательно получаем: [math]x_3=1,
Пример 10.6. Решить систему уравнений методом Гаусса единственного деления
В результате получено решение: [math]x_= begin 1&-1&0&1end^T[/math] .
Видео:Метод Гаусса Пример РешенияСкачать
Метод прогонки для решения СЛАУ
Метод применяется в случае, когда матрица [math]A[/math] — трехдиагональная. Сформулируем общую постановку задачи.
Дана система линейных алгебраических уравнений с трехдиагональной матрицей [math]A[/math] . Развернутая запись этой системы имеет вид
которому соответствует расширенная матрица
Здесь первое и последнее уравнения, содержащие по два слагаемых, знак минус (–) при коэффициенте [math]beta_i[/math] взят для более удобного представления расчетных формул метода.
Если к (10.2) применить алгоритм прямого хода метода Гаусса, то вместо исходной расширенной матрицы получится трапециевидная:
Учитывая, что последний столбец в этой матрице соответствует правой части, и переходя к системе, включающей неизвестные, получаем рекуррентную формулу:
Соотношение (10.3) есть формула для обратного хода, а формулы для коэффициентов [math]P_i,,Q_i[/math] которые называются прогоночными , определяются из (10.2), (10.3). Запишем (10.3) для индекса [math]i-1colon[/math] [math]x_=P_x_i+Q_[/math] и подставим в (10.2). Получим
Приводя эту формулу к виду (10.3) и сравнивая, получаем рекуррентные соотношения для [math]P_i,,Q_icolon[/math]
Определение прогоночных коэффициентов по формулам (10.4) соответствует прямому ходу метода прогонки.
Обратный ход метода прогонки начинается с вычисления [math]x_n[/math] . Для этого используется последнее уравнение, коэффициенты которого определены в прямом ходе, и последнее уравнение исходной системы:
Тогда определяется [math]x_n:[/math]
Остальные значения неизвестных находятся по рекуррентной формуле (10.3).
Видео:Как решить систему уравнений методом Гаусса? Просто с лидеромСкачать
Алгоритм решения систем уравнений методом прогонки
Q_1=-frac[/math] (в (10.4) подставить [math]alpha_1=0[/math] ).
2. Вычислить прогоночные коэффициенты: [math]P_2,Q_2;,P_3,Q_3;,ldots;,P_Q_[/math] по формулам (10.4).
2. Значения [math]x_,x_,ldots,x_1[/math] определить по формуле (10.3):
1. Аналогичный подход используется для решения систем линейных алгебраических уравнений с пятидиагональными матрицами.
2. Алгоритм метода прогонки называется корректным, если для всех [math]i=1,ldots,n,
beta_i-alpha_iP_ne0[/math] , и устойчивым, если [math]|P_i| .
3. Достаточным условием корректности и устойчивости прогонки является условие преобладания диагональных элементов в матрице [math]A[/math] , в которой [math]alpha_ine0[/math] и [math]gamma_ine0[/math] [math](i=2,3,ldots,n-1)colon[/math]
и в (10.6) имеет место строгое неравенство хотя бы при одном [math]i[/math] .
4. Алгоритм метода прогонки является экономичным и требует для своей реализации количество операций, пропорциональное [math]n[/math] .
Пример 10.7. Дана система линейных алгебраических уравнений с трехдиагональной матрицей [math]A
gamma_4=0)[/math] . Решить эту систему методом прогонки.
Данная система удовлетворяет условию преобладания диагональных элементов (10.3): в первом уравнении 3″>[math]5>3[/math] , во втором уравнении 3+1″>[math]6>3+1[/math] ; в третьем уравнении 1+2″>[math]4>1+2[/math] , в четвертом уравнении 1″>[math]3>1[/math] . Далее выполняем прямой и обратный ход, учитывая, что расширенная матрица имеет вид
1. Прямой ход. Вычислим прогоночные коэффициенты:
Подчеркнем, что [math]beta_1=-5;
beta_4=3[/math] , так как в (10.2) во втором слагаемом взят знак «минус»:
Подстановкой решения [math]x_=begin 1&1&1&1 end^T[/math] в исходную систему убеждаемся, что задача решена верно. Для данного примера [math]beta_i-alpha_iP_ne0,
i=1,2,3,4;[/math] [math]|P_i| , т.е. метод прогонки оказался корректным и устойчивым (см. пункт 3 замечаний 10.3).
Для наглядности представления информации исходные данные и результаты расчетов поместим в табл. 10.1, где в первых четырех колонках содержатся исходные данные, а в последних трех — полученные результаты.
Пример 10.8. Дана система линейных алгебраических уравнений с трехдиагональной матрицей [math]A[/math] , решить систему методом прогонки:
Результаты расчетов в прямом и обратном ходе занесены в табл. 10.2.
В результате получено решение: [math]x_=begin 1&2&3&4 end^T[/math] . Заметим, что условие преобладания диагональных элементов в данном примере не выполнено, но алгоритм метода прогонки позволил получить точное решение. При этом обратим внимание на небольшой порядок системы и отсутствие погрешностей вычислений.
Пример 10.9. Решить методом прогонки систему уравнений
Расширенная матрица системы имеет вид [math]begin2&1&0&0!!&vline!!&4\ 2&3&-1&-1!!&vline!!&9\ 0&1&-1&3!!&vline!!&12\ 0&0&1&-1!!&vline!!&-4 end[/math] .
1. Прямой ход. Вычислим прогоночные коэффициенты:
Получено решение системы: [math]x_=begin 1&2&-1&3 end^T[/math] . Результаты расчетов приведены в табл. 10.3
Видео:Метод Гаусса решения систем линейных уравненийСкачать
Метод LU-разложения для решения СЛАУ
Рассмотрим ещё один метод решения задачи (10.1). Метод опирается на возможность представления квадратной матрицы [math]A[/math] системы в виде произведения двух треугольных матриц:
где [math]L[/math] — нижняя, a [math]U[/math] — верхняя треугольные матрицы,
С учётом (10.7) система [math]Ax=b[/math] представляется в форме
Решение системы (10.8) сводится к последовательному решению двух простых систем с треугольными матрицами. В итоге процедура решения состоит из двух этапов.
Прямой ход. Произведение [math]Ux[/math] обозначим через [math]y[/math] . В результате решения системы [math]Ly=b[/math] находится вектор [math]y[/math] .
Обратный ход. В результате решения системы [math]Ux=y[/math] находится решение задачи — столбец [math]x[/math] .
В силу треугольности матриц [math]L[/math] и [math]U[/math] решения обеих систем находятся рекуррентно (как в обратном ходе метода Гаусса).
Из общего вида элемента произведения [math]A=LU[/math] , а также структуры матриц [math]L[/math] и [math]U[/math] следуют формулы для определения элементов этих матриц:
Результат представления матрицы [math]A[/math] в виде произведения двух треугольных матриц (операции факторизации) удобно хранить в одной матрице следующей структуры:
Вычисления на k-м шаге метода LU-разложения удобно производить, пользуясь двумя схемами, изображенными на рис. 10.2.
1. Всякую квадратную матрицу [math]A[/math] , имеющую отличные от нуля угловые миноры
можно представить в виде LU-разложения, причем это разложение будет единственным. Это условие выполняется для матриц с преобладанием диагональных элементов, у которых
2. В результате прямого хода может быть вычислен определитель матрицы [math]A[/math] по свойствам определителя произведения матриц (теорема 2.2) и определителя треугольных матриц:
Алгоритм метода LU-разложение
1. Выполнить операцию факторизации исходной матрицы [math]A[/math] , применяя схемы (рис. 10.2) или формулы (10.9), и получить матрицы [math]L[/math] и [math]U[/math] .
2. Решить систему [math]Lcdot y=b[/math] .
3. Решить систему [math]Ucdot x=b[/math] .
Пример 10.10. Решить систему линейных алгебраических уравнений методом LU-разложения
1. Выполним операцию факторизации:
В результате получены две треугольные матрицы:
Согласно пункту 2 замечаний 10.4, определитель матрицы [math]A[/math] находится в результате перемножения диагональных элементов матрицы [math]Lcolon,det=2cdot0,!5cdot26=26[/math] .
2. Решим систему [math]Lcdot y=b[/math] :
begin2y_1=16,\ 3y_1+0,!5y_2=10,\ y_1+2,!5y_2+26y_3=16. end[/math] . Отсюда [math]beginy_1=8,\ y_2=(10-3cdot8)cdot2=-28,\[4pt] y_3=dfrac=3.end[/math]
3. Решим систему [math]Ucdot x=y:[/math]
beginx_1+0,!5x_2+2x_3=8,\ x_2-10x_3=-28,\ x_3=3.end[/math] . Отсюда [math]begin x_3=3,\ x_2=-28+10cdot3=2,\ x_1=8-2cdot3-0,!5cdot2=1. end[/math]
Пример 10.11. Решить систему линейных алгебраических уравнений методом LU-разложения.
1. Выполним операцию факторизации:
2. Решим систему линейных уравнений [math]Lcdot y=b[/math] :
begin3y_1=5,\ -2y_1+y_2/3=0,\ 2y_1-y_2/3+5y_3=15. end[/math] . Отсюда [math]beginy_1=5/3,\ y_2=10,\ y_3=3.end[/math]
3. Решим систему [math]Ucdot x=y[/math] :
begin x_1-x_2/3=5/3,\ x_2+3x_3=10,\ x_3=3;end Rightarrow
Пример 10.12. Решить систему линейных алгебраических уравнений методом LU-разложения
1. Выполним процедуру факторизации:
В результате получаем матрицы LU-разложения:
2. Решим систему уравнений [math]Lcdot y=b:[/math]
begin2y_1=4,\ 2y_1+2y_2=9,\ y_2-y_3/3=12,\ y_3+5y_4=-4,end!!! Rightarrow
3. Решим систему уравнений [math]Ucdot x=y:[/math]
Отсюда записываем решение исходной системы уравнений: [math]x_= begin1&2&-1&3end^T[/math] .
Метод квадратных корней для решения СЛАУ
При решении систем линейных алгебраических уравнений с симметрическими матрицами можно сократить объем вычислений почти вдвое.
Пусть [math]A[/math] — симметрическая квадратная матрица системы [math]Ax=b[/math] порядка [math]n[/math] . Решим задачу ее представления в виде
Находя произведение [math]U^Tcdot U[/math] , составим систему уравнении относительно неизвестных элементов матрицы [math]U:[/math]
Система имеет следующий вид:
Из первой строки системы находим
Из второй строки определяем
Из последней строки имеем [math]textstyle<u_=sqrt<a_-sumlimits_^u_^2>>[/math] .
Таким образом, элементы матрицы [math]U[/math] находятся из соотношений
При осуществлении [math]U^TU[/math] -разложения симметрической матрицы могут возникать ситуации, когда [math]u_=0[/math] при некотором [math]i[/math] или подкоренное выражение отрицательно. Для симметрических положительно определенных матриц разложение выполнимо.
Если матрица [math]A[/math] представима в форме [math]U^TU[/math] , то система [math]Ax=b[/math] имеет вид [math]U^TUx=b[/math] . Решение этой системы сводится к последовательному решению двух систем с треугольными матрицами. В итоге процедура решения состоит их двух этапов.
1. Прямой ход. Произведение [math]Ux[/math] обозначается через [math]y[/math] . В результате решения системы [math]U^Ty=b[/math] находится столбец [math]y[/math] .
2. Обратный ход. В результате решения системы [math]Ux=y[/math] находится решение задачи — столбец [math]x[/math] .
Алгоритм метода квадратных корней
1. Представить матрицу [math]A[/math] в форме [math]A=U^Tcdot U[/math] , используя (10.10).
2. Составить систему уравнений [math]U^Tcdot y=b[/math] и найти [math]y[/math] .
3. Составить систему уравнений [math]Ucdot x=y[/math] и найти [math]x[/math] .
Найти решение системы уравнений методом квадратных корней
Решение. 1. Представим матрицу [math]A[/math] в форме [math]A=U^Tcdot U[/math] , используя (10.10):
при [math]i=1[/math] получаем [math]u_= sqrt<a_>= sqrt,,
при [math]i=2[/math] имеем
Таким образом, получили
2. Решим систему [math]U^Tcdot y=b[/math] :
3. Решим систему [math]Ucdot x=y[/math] :
В результате получили решение исходной системы [math]x_1=1,
Метод простых итераций для решения СЛАУ
Альтернативой прямым методам решения СЛАУ являются итерационные методы, основанные на многократном уточнении [math]x^[/math] , заданного приближенного решения системы [math]Acdot x=b[/math] . Верхним индексом в скобках здесь и далее по тексту обозначается номер итерации (совокупности повторяющихся действий).
Реализация простейшего итерационного метода — метода простых итераций — состоит в выполнении следующих процедур.
1. Исходная задача [math]Acdot x=b[/math] преобразуется к равносильному виду:
где [math]alpha[/math] — квадратная матрица порядка [math]n[/math] ; [math]beta[/math] — столбец. Это преобразование может быть выполнено различными путями, но для обеспечения сходимости итераций (см. процедуру 2) нужно добиться выполнения условия [math]|alpha| .
2. Столбец [math]beta[/math] принимается в качестве начального приближения [math]x^= beta[/math] и далее многократно выполняются действия по уточнению решения, согласно рекуррентному соотношению
или в развернутом виде
3. Итерации прерываются при выполнении условия (где 0″>[math]varepsilon>0[/math] — заданная точность, которую необходимо достигнуть при решении задачи)
1. Процесс (10.12) называется параллельным итерированием , так как для вычисления (k+1)-го приближения всех неизвестных учитываются вычисленные ранее их k-е приближения.
2. Начальное приближение [math]x^[/math] может выбираться произвольно или из некоторых соображений. При этом может использоваться априорная информация о решении или просто «грубая» прикидка. При выполнении итераций (любых) возникают следующие вопросы:
а) сходится ли процесс (10.12), т.е. имеет ли место [math]x^to x_[/math] , при [math]ktoinfty[/math] , где [math]x_[/math] — точное решение?
б) если сходимость есть, то какова ее скорость?
в) какова погрешность найденного решения [math]x^[/math] , т.е. чему равна норма разности [math]bigl|x^-x_bigr|[/math] ?
Ответ на вопросы о сходимости дают следующие две теоремы.
Теорема (10.1) о достаточном условии сходимости метода простых итераций. Метод простых итераций, реализующийся в процессе последовательных приближений (10.12), сходится к единственному решению исходной системы [math]Ax=b[/math] при любом начальном приближении [math]x^[/math] со скоростью не медленнее геометрической прогрессии, если какая-либо норма матрицы [math]alpha[/math] меньше единицы, т.е. [math]|alpha|_s .
1. Условие теоремы 10.1, как достаточное, предъявляет завышенные требования к матрице [math]alpha[/math] , и потому иногда сходимость будет, если даже [math]|alpha|geqslant1[/math] .
2. Сходящийся процесс обладает свойством «самоисправляемости», т.е. отдельная ошибка в вычислениях не отразится на окончательном результате, так как ошибочное приближение можно рассматривать, как новое начальное.
3. Условия сходимости выполняются, если в матрице [math]A[/math] диагональные элементы преобладают, т.е.
и хотя бы для одного [math]i[/math] неравенство строгое. Другими словами, модули диагональных коэффициентов в каждом уравнении системы больше суммы модулей недиагональных коэффициентов (свободные члены не рассматриваются).
4. Чем меньше величина нормы [math]|alpha|[/math] , тем быстрее сходимость метода.
Теорема (10.2) о необходимом и достаточном условии сходимости метода простых итераций. Для сходимости метода простых итераций (10.12) при любых [math]x^[/math] и [math]beta[/math] необходимо и достаточно, чтобы собственные значения матрицы [math]alpha[/math] были по модулю меньше единицы, т.е. [math]bigl|lambda_i(alpha)bigr| .
Замечание 10.7. Хотя теорема 10.2 дает более общие условия сходимости метода простых итераций, чем теорема 10.1, однако ею воспользоваться сложнее, так как нужно предварительно вычислить границы собственных значений матрицы [math]alpha[/math] или сами собственные значения.
Преобразование системы [math]Ax=b[/math] к виду [math]x=alpha x+beta[/math] с матрицей [math]alpha[/math] , удовлетворяющей условиям сходимости, может быть выполнено несколькими способами. Приведем способы, используемые наиболее часто.
1. Уравнения, входящие в систему [math]Ax=b[/math] , переставляются так, чтобы выполнялось условие (10.14) преобладания диагональных элементов (для той же цели можно использовать другие элементарные преобразования). Затем первое уравнение разрешается относительно [math]x_1[/math] , второе — относительно [math]x_2[/math] и т.д. При этом получается матрица [math]alpha[/math] с нулевыми диагональными элементами.
Например, система [math]begin-2,!8x_1+x_2+4x_3=60,\ 10x_1-x_2+8x_3=10,\ -x_1+2x_2-0,!6x_3=20end[/math] с помощью перестановки уравнений приводится к виду [math]begin10x_1-x_2+8x_3=10,\ -x_1+2x_2-0,!6x_3=20,\-2,!8x_1+x_2+4x_3=60, end[/math] где
|4|>|-2,!8|+|1|[/math] , т.е. диагональные элементы преобладают.
Выражая [math]x_1[/math] из первого уравнения, [math]x_2[/math] — из второго, а [math]x_3[/math] — из третьего, получаем систему вида [math]x=alpha x+beta:[/math]
Заметим, что [math]|alpha|_1=max=0,!95 , т.е. условие теоремы 10.1 выполнено.
Проиллюстрируем применение других элементарных преобразований. Так, система [math]begin4x_1+x_2+9x_3=-7,\ 3x_1+8x_2-7x_3=-6,\ x_1+x_2-8x_3=7end[/math] путем сложения первого и третьего уравнений и вычитания из второго уравнения третьего уравнения преобразуется к виду с преобладанием диагональных элементов: [math]begin 5x_1+2x_1+x_3=0,\ 2x_1+7x_2+x_3=-13,\ x_1+x_2-8x_3=7. end[/math]
2. Уравнения преобразуются так, чтобы выполнялось условие преобладания диагональных элементов, но при этом коэффициенты [math]alpha_[/math] не обязательно равнялись нулю.
Например, систему [math]begin1,!02x_1-0,!15x_2=2,!7,\ 0,!8x_1+1,!05x_2=4 end[/math] можно записать в форме [math]beginx_1=-0,!02x_1+0,!15x_2+2,!7,\ x_2=-0,!8x_1-0,!05x_2+4,end[/math] для которой [math]|alpha|_1= max= 0,!85 .
i,j=1,ldots,n[/math] достаточно малы, условие сходимости выполняется.
Алгоритм метода простых итераций
1. Преобразовать систему [math]Ax=b[/math] к виду [math]x=alpha x+beta[/math] одним из описанных способов.
2. Задать начальное приближение решения [math]x^[/math] произвольно или положить [math]x^=beta[/math] , а также малое положительное число [math]varepsilon[/math] (точность). Положить [math]k=0[/math] .
3. Вычислить следующее приближение [math]x^[/math] по формуле [math]x^= alpha x^+beta[/math] .
4. Если выполнено условие [math]bigl|x^-x^bigr| , процесс завершить и в качестве приближенного решения задачи принять [math]x_cong x^[/math] . Иначе положить [math]k=k+1[/math] и перейти к пункту 3 алгоритма.
Методом простых итераций с точностью [math]varepsilon=0,!01[/math] решить систему линейных алгебраических уравнений:
Решение. 1. Так как [math]|2| , то условие (5.41) не выполняется. Переставим уравнения так, чтобы выполнялось условие преобладания диагональных элементов:
|10|>|2|+|2|[/math] . Выразим из первого уравнения [math]x_1[/math] , из второго [math]x_2[/math] , из третьего [math]x_3:[/math]
Заметим, что [math]|alpha|_1= ma=0,!4 , следовательно, условие сходимости (теорема 10.1) выполнено.
2. Зададим [math]x^=beta= begin 1,!2\1,!3\1,!4 end[/math] . В поставленной задаче [math]varepsilon= 0,!01[/math] .
3. Выполним расчеты по формуле (10.12):
до выполнения условия окончания и результаты занесем в табл. 10.4.
4. Расчет закончен, поскольку выполнено условие окончания [math]bigl|x^-x^ bigr|=0,!0027 .
Приближенное решение задачи: [math]x_cong begin0,!9996& 0,!9995& 0,!9993 end^T[/math] . Очевидно, точное решение: [math]x_=begin 1&1&1 end^T[/math] .
Приведем результаты расчетов для другого начального приближения [math]x^=begin 1,!2&0&0 end^T[/math] и [math]varepsilon=0,!001[/math] (табл. 10.5).
Приближенное решение задачи: [math]x_cong begin 1,!0001& 1,!0001& 1,!0001 end^T[/math] .
Метод Зейделя для решения СЛАУ
Этот метод является модификацией метода простых итераций и в некоторых случаях приводит к более быстрой сходимости.
Итерации по методу Зейделя отличаются от простых итераций (10.12) тем, что при нахождении i-й компоненты (k+1)-го приближения сразу используются уже найденные компоненты (к +1) -го приближения с меньшими номерами [math]1,2,ldots,i-1[/math] . При рассмотрении развернутой формы системы итерационный процесс записывается в виде
В каждое последующее уравнение подставляются значения неизвестных, полученных из предыдущих уравнений.
Теорема (10.3) о достаточном условии сходимости метода Зейделя. Если для системы [math]x=alpha x+beta[/math] какая-либо норма матрицы [math]alpha[/math] меньше единицы, т.е. [math]|alpha|_s , то процесс последовательных приближений (10.15) сходится к единственному решению исходной системы [math]Ax=b[/math] при любом начальном приближении [math]x^[/math] .
Записывая (10.15) в матричной форме, получаем
где [math]L,,U[/math] являются разложениями матрицы [math]alpha:[/math]
Преобразуя (10.16) к виду [math]x=alpha x+beta[/math] , получаем матричную форму итерационного процесса метода Зейделя:
Тогда достаточное, а также необходимое и достаточное условия сходимости будут соответственно такими (см. теоремы 10.1 и 10.2):
1. Для обеспечения сходимости метода Зейделя требуется преобразовать систему [math]Ax=b[/math] к виду [math]x=alpha x+beta[/math] с преобладанием диагональных элементов в матрице а (см. метод простых итераций).
2. Процесс (10.15) называется последовательным итерированием , так как на каждой итерации полученные из предыдущих уравнений значения подставляются в последующие. Как правило, метод Зейделя обеспечивает лучшую сходимость, чем метод простых итераций (за счет накопления информации, полученной при решении предыдущих уравнений). Метод Зейделя может сходиться, если расходится метод простых итераций, и наоборот.
3. При расчетах на ЭВМ удобнее пользоваться формулой (10.16).
4. Преимуществом метода Зейделя, как и метода простых итераций, является его «самоисправляемость».
5. Метод Зейделя имеет преимущества перед методом простых итераций, так как он всегда сходится для нормальных систем линейных алгебраических уравнений, т.е. таких систем, в которых матрица [math]A[/math] является симметрической и положительно определенной. Систему линейных алгебраических уравнений с невырожденной матрицей [math]A[/math] всегда можно преобразовать к нормальной, если ее умножить слева на матрицу [math]A^T[/math] (матрица [math]A^TA[/math] — симметрическая). Система [math]A^TAx= A^Tb[/math] является нормальной.
Алгоритм метода Зейделя
1. Преобразовать систему [math]Ax=b[/math] к виду [math]x=alpha x+beta[/math] одним из описанных способов.
2. Задать начальное приближение решения [math]x^[/math] произвольно или положить [math]x^=beta[/math] , а также малое положительное число [math]varepsilon[/math] (точность). Положить [math]k=0[/math] .
3. Произвести расчеты по формуле (10.15) или (10.16) и найти [math]x^[/math] .
4. Если выполнено условие окончания [math]bigl|x^-x^bigr| , процесс завершить и в качестве приближенного решения задачи принять [math]x_cong x^[/math] . Иначе положить [math]k=k+1[/math] и перейти к пункту 3.
Пример 10.15. Методом Зейделя с точностью [math]varepsilon=0,!001[/math] решить систему линейных алгебраических уравнений:
1. Приведем систему [math]Ax=b[/math] к виду [math]x=alpha x+beta[/math] (см. пример 10.14):
Так как [math]|alpha|_1=max=0,!4 , условие сходимости выполняется.
2. Зададим [math]x^= begin 1,!2&0&0 end^T[/math] . В поставленной задаче [math]varepsilon=0,!001[/math] .
Выполним расчеты по формуле (10.15): [math]begin x_1^=-0,!1cdot x_2^-0,!1cdot x_3^+1,!2,,\[4pt] x_2^=-0,!2cdot x_1^-0,!1cdot x_3^+1,!3,,\[4pt] x_3^=-0,!2cdot x_1^-0,!2cdot x_2^+1,!4,,end!!!!! (k=0,1,ldots)[/math] и результаты занесем в табл. 10.6.
Очевидно, найденное решение [math]x_= begin 1&1&1 end^T[/math] является точным.
4. Расчет завершен, поскольку выполнено условие окончания [math]bigl|x^-x^bigr|= 0,!0004 .
Пример 10.16. Методом Зейделя с точностью [math]varepsilon=0,!005[/math] решить систему линейных алгебраических уравнений:
|5|>|-1|+|-2|[/math] , в данной системе диагональные элементы преобладают. Выразим из первого уравнения [math]x_1[/math] , из второго [math]x_2[/math] , из третьего [math]x_3:[/math]
2. Зададим [math]x^= begin 0&0&0 end^T[/math] . В поставленной задаче [math]varepsilon= 0,!005[/math] .
k=0,1,ldots[/math] и результаты занесем в табл. 10.7.
Очевидно, найденное решение [math]x_= begin 1&1&1 end^T[/math] является точным.
4. Расчет завершен, поскольку выполнено условие окончания [math]bigl|x^-x^bigr|= 0,!001 .