Общая формула для решения уравнения sinx a

Уравнение. Простейшее тригонометрическое уравнение sin х = а.

Существует возможность отобразить всякий корень уравнения sin х = а, как абсциссу некой точки пересечения синусоиды у =sinх и прямой у = а, и, соответственно верно обратное, абсцисса всякой такой точки пересечения выступает одним из корней уравнения.

При | а| >1 синусоида у = sin х не пересечется с прямой у = а. В данном случае у уравнения нет корней.

Общая формула для решения уравнения sinx a

При а = 0 у уравнение sin x = а будут корни:

где m изменяется по всем целым числам (m = 0, ±1, ±2, ±3, . ).

Несомненно, arcsin0 = 0 и соответственно получаем (-1) m arcsin 0 + mπ = mπ.

При а = 1, корни уравнения определяются по формуле:

где k изменяется по всем целым числам (k = 0, ±1, ±2, ±3, . ).

Общая формула для решения уравнения sinx a

Для обоснования формулы выполним подстановку: а = 1 в формулу:

(-1) m arcsin0+ mπ = mπ и принимая к сведению, что arcsin 1= π /2, имеем: (- 1) m arcsin 1 + mπ= (- 1) mπ /2 + mπ.

где k изменяется по всем целым числам (k = 0, ±1, ±2, ±3, . . .).

Общая формула для решения уравнения sinx a

Необходимо учитывать, что все вышеуказанные формулы можно применять в том случае, когда искомый угол х представлен в радианах. Когда х представлен в градусах, то эти формулы нужно преобразовать.

К примеру, вместо формулы (-1) m arcsin 0 + mπ = mπ необходимо применять формулу х= (-1) m arcsinа + 180m, вместо формулы х = mπ — формулу х= 180 m и т. д.

Видео:Алгебра 10 класс (Урок№42 - Уравнение sin x = a.)Скачать

Алгебра 10 класс (Урок№42 - Уравнение sin x = a.)

Арксинус. Решение уравнения sin x = a

п.1. Понятие арксинуса

В записи (y=sinx) аргумент x — это значение угла (в градусах или радианах), функция y – синус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному синусy найти угол. Но одному значению синусa соответствует бесконечное количество углов. Например, если (sinx=1), то (x=fracpi2+2pi k, kinmathbb); если (sinx=0), то (x=pi k, kinmathbb) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором синус принимает все значения из [-1;1], но только один раз: (-fracpi2 leq xleq fracpi2) (правая половина числовой окружности).

(arcsinfrac12=fracpi6, arcsinleft(-frac<sqrt>right)=-frac)
(arcsin2) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arcsinx

Общая формула для решения уравнения sinx a
1. Область определения (-1leq xleq1) .
2. Функция ограничена сверху и снизу (-fracpi2leq arcsinxleq fracpi2) . Область значений (yin[-fracpi2; fracpi2])
3. Максимальное значение (y_=fracpi2) достигается в точке x=1
Минимальное значение (y_=-fracpi2) достигается в точке x =-1
4. Функция возрастает на области определения.
5. Функция непрерывна на области определения.
6. Функция нечётная: (arcsin(-x)=-arcsin(x)) .

п.3. Уравнение sin⁡x=a

Общая формула для решения уравнения sinx aЗначениями арксинуса могут быть только углы от (-fracpi2) до (fracpi2) (от -90° до 90°). А как выразить другие углы через арксинус?

Углы в левой части числовой окружности записывают как разность π и арксинуса (угла справа). А остальные углы, которые превышают π по модулю, записывают через сумму арксинуса и величин, которые «не помещаются» в область значений арксинуса.

1) Решим уравнение (sinx=frac12).
Найдем точку (frac12) в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через через эту точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (fracpi6) и (frac) — это базовые корни.
Если взять корень справа (fracpi6) и прибавить к нему полный оборот (fracpi6+2pi=frac), синус полученного угла (sinfrac=frac12), т.е. (frac) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi6+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (frac+2pi k).
Получаем ответ: (x_1=fracpi6+2pi k) и (x_2=frac+2pi k)
Заметим, что (arcsinfrac12=fracpi6). Полученный ответ является записью вида
(x_1=arcsinfrac12+2pi k) и (x_2=pi-arcsinfrac12+2pi k)
А т.к. арксинус для (frac12) точно известен и равен (fracpi6), то мы его просто подставляем и пишем ответ. Но так бывает далеко не всегда.

2) Решим уравнение (sinx=0,8)

Общая формула для решения уравнения sinx aНайдем точку 0,8 в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению правая точка – это угол, равный arcsin0,8.
Тогда левая точка – это разность развернутого угла и арксинуса, т.е. (π–arcsin⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
(x_1=arcsin0,8+2pi k,)
(x_2=pi-arcsin0,8+2pi k)

Докажем, что семейства решений для корней справа и слева можно записать одним выражением (x=(-1)^k arcsina+pi k).
Действительно, для чётных (k=2n) получаем: $$ x=(-1)^ arcsina+pi cdot 2n=arcsina+2pi n $$ это семейство решений для корня справа (с добавлением и вычитанием полных оборотов).
Для нечётных (k=2n+1):
$$ x=(-1)^ arcsina+pi cdot (2n+1)=-arcsina+2pi n +pi=pi-arcsina+2pi n $$ это семейство решений для корня слева (с добавлением и вычитанием полных оборотов).
Обратное преобразование двух семейств решений в общую запись аналогично.
Следовательно: $$ x=(-1)^k arcsina+pi kLeftrightarrow left[ begin x=arcsina+2pi n\ x=pi-arcsina+2pi n end right. $$ Что и требовалось доказать.

Для примеров, решённых выше, можем записать: $$ 1) left[ begin x_1=fracpi6+2pi k\ x_2=frac+2pi k end right. Leftrightarrow x=(-1)^kfracpi6 +pi k $$
$$ 2) left[ begin x_1=arcsin0,8+2pi k\ x_2=pi-arcsin0,8+2pi k end right. Leftrightarrow x=(-1)^karcsin0,8 +pi k $$ Выбор общей или раздельной записи решения зависит от задачи.
Как правило, если ответ еще не найден, и нужны дальнейшие преобразования, решение записывают как два раздельных семейства.
Если же просто нужно записать ответ, то пишут общее выражение.

п.4. Примеры

Пример 1. Найдите функцию, обратную арксинусу. Постройте графики арксинуса и найденной функции в одной системе координат.

Для (y=arcsinx) область определения (-1leq xleq 1), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=sinx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) и область значений (-1leq yleq 1).
Строим графики:
Общая формула для решения уравнения sinx a
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) (sin x=-1)
Общая формула для решения уравнения sinx a
(x=-fracpi2+2pi k)
б) (sin x=frac<sqrt>)
Общая формула для решения уравнения sinx a
$$ left[ begin x_1=fracpi4+2pi k\ x_2=frac+2pi k end right. Leftrightarrow x=(-1)^frac +pi k $$
в) (sin x=0)
Общая формула для решения уравнения sinx a
(x=pi k)
г) (sin x=sqrt)
Общая формула для решения уравнения sinx a
(sqrtgt 1, xinvarnothing)
Решений нет
д) (sin x=0,7)
Общая формула для решения уравнения sinx a
begin left[ begin x_1=arcsin(0,7)+2pi k\ x_2=pi-arcsin(0,7)+2pi k end right. Leftrightarrow\ Leftrightarrow x=(-1)^k arcsin(0,7) +pi k end

e) (sin x=-0,2)
Общая формула для решения уравнения sinx a
Арксинус нечетный, поэтому: $$ srcsin(-0,2)=-arcsin(0,2) $$ Получаем: begin left[ begin x_1=-arcsin(0,2)+2pi k\ x_2=pi+arcsin(0,7)+2pi k end right. Leftrightarrow\ Leftrightarrow x=(-1)^arcsin(0,2) +pi k end

Пример 3. Запишите в порядке возрастания: $$ arcsin0,2; arcsin(-0,7); arcsinfracpi4 $$

Общая формула для решения уравнения sinx aСпособ 1. Решение с помощью числовой окружности

Отмечаем на оси синусов (ось OY) точки с абсциссами 0,2; -0,7; (fracpi4approx 0,79)
Значения синусов (углы) считываются на правой половине окружности: чем больше синус (от -1 до 1), тем больше угол (от (-fracpi2) до (fracpi2)).
Получаем: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$Общая формула для решения уравнения sinx aСпособ 2. Решение с помощью графика (y=arcsinx)

Отмечаем на оси OY аргументы 0,2; -0,7; (fracpi4approx 0,79). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арксинусов по возрастанию: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$Способ 3. Аналитический
Арксинус – функция возрастающая: чем больше аргумент, тем больше функция.
Поэтому располагаем данные в условии аргументы по возрастанию: -0,7; 0,2; (fracpi4).
И записываем арксинусы по возрастанию: (arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4)

Пример 4*. Решите уравнения:
(a) arcsin(x^2-3x+3)=fracpi2) begin x^2-3x+3=sinfracpi2=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end Ответ:

(б) arcsin^2x-arcsinx-2=0)
( text -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: $$ t^2-t-2=0Rightarrow (t-2)(t+1)=0Rightarrow left[ begin t_1=2gt fracpi2 — text\ t_2=-1 end right. $$ Возвращаемся к исходной переменной: begin arcsinx=-1\ x=sin(-1)=-sin1 end Ответ: -sin1

(в) arcsin^2x-pi arcsinx+frac=0)
( text -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: begin t^2-pi t+frac=0\ D=(-pi)^2-4cdot frac=frac, sqrt=fracpi3 Rightarrow left[ begin t_1=frac=fracpi3\ t_2=frac=fracgt fracpi2 — text end right. end Возвращаемся к исходной переменной:
begin arcsinx=fracpi3\ x=sinfracpi3=frac<sqrt> end Ответ: (frac<sqrt>)

Видео:10 класс. Решение уравнений sin x = aСкачать

10 класс. Решение уравнений sin x = a

Как репетитор по математике поясняет формулу корней уравнения SinX=a

Известно, что большинство школьных учебников по математике далеко от методического совершенства, к которому так стремятся их авторы. На мой взгляд, многие из них предлагают туманные или совсем точные объяснения сложных теоретических вопросов. Обычно, если репетитор по математике в совершенстве владеет искусством объяснений, то либо меняет логику учебника полностью, либо дополняет тексты адаптированными для детского восприятия комментариями. Я уже давно пересмотрел подходы к изучению многих тем школьной программы по математике, являющиеся классическими. Невнятная логика переходов от одного факта к другому (от формулы к формуле), сухая схематичность выкладок и обилие математических терминов, — далеко не полный список проблем в построении классических объяснений.

Можно ли как-то исправить недосмотры и переписать учебники с учетом этих замечаний? Думаю, что нельзя. Почему? Если аккуратно подходить к каждому проблемному участку и менять «скупую математику» на «живую» и понятную, то размеры учебников возрастут в несколько раз. Почему? Очень трудно передать коротко те мысли, которые помогают прояснить сложные математические процессы. На некоторые из них придется потратить по 0,5-1,5 страниц печатного текста. Если так править каждый параграф, то и без того увесистые портфели учеников можно будет использовать для занятий тяжелой атлетикой.

Поэтому репетитор по математике как всегда «принимает огонь на себя». Отмечу, что индивидуальные занятия с преподавателем создают наилучшие условия для проникновения в глубины предмета, ибо в переполненном классе сложнее настроить ученика на серьезную вдумчивую работую. Репетитору же, как правило, удается донести до его сознания разного рода тонкости.

Толковое подробное объяснение сложного вопроса может отнять весь урок. И даже это не гарантирует 100%-го понимания темы всеми учащимися. Очень трудно удерживать внимание целой аудитории на детальном рассмотрении важных «мелочей». Особенно если оно долгое. Отдельно взятый ученик может в любой момент отвлечься от доски и полностью выключится из процесса. Преподаватель замеввший его потерянный взгляд и повторяющий часть объяснения заново, рискует запутает других учеников, ибо теряется последовательность изложения логических выводов. Сильному ученику станет скучно и он, скорее всего, потеряет концентрацию.

Неравномерность скорости восприятия информации (даже в классе с приблизительно равным уровнем знаний и способностей) делает аккуратные объяснения тем малоэффективными. Поэтому и здесь индивидуальный репетитор по математике оказывается в более выгодных условиях по сравнению со школьным преподавателем. В тихой и спокойной обстановке при полном контроле за пониманием и вниманием ученика репетитору удается объяснить теорему так, как это не удается сделать в классе.

Какую коррекцию проводит репетитор по математике?

Предлагаю вашему вниманию пример одного из моих объяснений при работе с темой «решение простейших тригонометрических уравнений». Напомню, что подготовка к ЕГЭ по математике включает в себя разбор формул для понимания решений задач типа С1. Что предлагает нам базовый учебник математики А.Н. Колмогорова 10-11 класс? Откроем пункт №9.2, стр.72 (17-е издание). В нем описывается построение формулы корней уравнения вида Общая формула для решения уравнения sinx a. Общая формула для решения уравнения sinx aСделан рисунок круга и даны вполне нормальные объяснения формулам для левой и правой точек – концов соответствующей хорды.
Общая формула для решения уравнения sinx aгде Общая формула для решения уравнения sinx a
Далее следует текст (цитирую): Удобно эти решения уравнения Общая формула для решения уравнения sinx aзаписывать не двумя, а одной формулой:
Общая формула для решения уравнения sinx aНетрудно убедиться, что при четных k=2n из формулы (6) находим все решения, записанные формулой (4), а при нечетных k=2n+1 – решения, записываемые формулой (5).

Ну как Вам, понятно? Можно ли считать переход доказанным? Достаточно ли репетитору по математике повторить этот текст на уроке? Думаю, что нет. И вряд ли поможет прямая подстановка выражений 2n и 2n+1, ибо она точного доказательства не даст. Меня всегда возмущала тактика ухода от рассмотрения тонких вопросов. Как только автор с ним сталкивается, он сразу же прибегает к фразе «нетрудно убедиться» или «нетрудно доказать». Давайте разберемся, что именно здесь требуется вообще доказать и какие пояснения репетитору по математике следует предоставить ученику.

Пояснения репетитора к выводу формулы Общая формула для решения уравнения sinx a

Лучше строить рассуждения от обратного. Не подставлять 2n и 2n+1, а выделять их в 4-ой и 5-ой формулах. Некоторым ученикам 10 класса репетитор по математике должен объяснить принцип работы самих формул: для каждого целого числа, подставленного вместо буквы n (я использую всегда самые доступные фразы и термины) каждая формула вычисляет соответствующий ему угол. Подставляя в n все целые знания можно вычислить все множество углов (корней уравнения). Естественно, что запись формул может быть совершенно произвольной, когда множество сохраняется. Если замена на 6-ю формулу не приведет ни к потере, ни к приобретению лишних углов, то эта замена будет корректной. Согласно всем математическим правилам репетитору требуется просто показать совпадение множеств. Как это сделать? Лучше всего подготовить (преобразовать) формулы (4) и (5) к виду, максимально близкому к виду (6).

Понятно, что если вместо коэффициента «единица» перед арксинусом в формуле (4) поставить степень Общая формула для решения уравнения sinx a, то это не изменит результата при вычислении каждого угла, поскольку 2n – четно. В пятой формуле репетитор по математике переставляет слагаемое Общая формула для решения уравнения sinx aв конец выражения и выносит его за скобку. Это тождественное преобразование, также не меняющее результата при любом n. Затем вместо коэффициента -1 перед вторым арксинусом репетитор вставляет степень Общая формула для решения уравнения sinx a. И в этом случае результат сохранится, ибо при любом целом n значение 2n+1 будет нечетным, а при возведении 2n+1 в нечетную степень получим ту же самую «минус единицу».

Итак, репетитор по математике преобразует формулы к следующему виду:
Общая формула для решения уравнения sinx a

Множители в последнем слагаемом специально переставляются, дабы обеспечить максимально точное расположение выражений 2n и 2n+1 для формулы (6) к моменту из замены на k. Лучше всего их выделить разным цветом.

Далее – самое важное. Текст репетитора (дословно):
Докажем, что каждый угол, вычисляемый по (4) формуле, можно вычислить по формуле (6). Почему? Допустим, в формулу (4) вставилось какое-нибудь целое число, например n=7. Тогда в зеленой рамке получится 14. Если вставить 14 вместо переменной k в формулу (6), то получим те же действия, что и в (4) и, следовательно, совпадут результаты. Очевидность этого совпадения обеспечивает максимально близкий вид 4-ой формулы к 6-ой. Поэтому ни один угол формулы (4) не будет потерян. Аналогичные рассуждения репетитор по математике проводит с формулой (5). Итак, мы гарантируем, что все углы формул (4) и (5) можно вычислить по формуле (6).

И наоборот, любой угол формулы (6) можно получить или по (4) или по (5). Почему? Допустим, что при каком-нибудь значении Общая формула для решения уравнения sinx aмы нашли угол по (6). Если k – четно, например k=10, то вставляя в 4-ю формулу n=5, мы вычислим тот же угол. Если k — нечетно, например Общая формула для решения уравнения sinx a(и здесь репетитору по математике лучше использовать примеры с конкретными значениями n), то подставляя n=6 в (5) снова увидим повторение набора действий и, как следствие, ответа. И так для любого числа k. Поэтому ни один угол формулы (6) не будет посторонним Общая формула для решения уравнения sinx aа оба множества (4)+(5) и (6) совпадут.

Если проводится подготовка к ЕГЭ по математике, то репетитору следует помнить о том, что в С1 наибольшую частоту появления имеют задачи на отбор корней. В этом случае общая формула, о которой идет речь в статье, не используется вовсе. Абитуриент отмечает точки на круге, удовлетворяющие условию SinX=a, отсекает лишнюю и только после этого записывает ответ. Думаю, что в условиях экспресс подготовки к ЕГЭ по математике не стоит тратить время на отработку навыков работы с «минус единицей в степени эн» и ограничиться сериями (4) и (5). Если абитуриент на ЕГЭ запишет ответ в С1 отдельными формулами, вместо общей, то это не приведет к снижению оценки (балла) за все задание.
Общая формула для решения уравнения sinx a

Колпаков А.Н. Репетитор по математике Москва. Автор подхода.

Разумно, но какие-такие «математические правила» не убеждают, что общая формула есть объединение для четных и нечетных и наоборот? И уж очень длинное обсуждение совершенно очевидного факта!
А честно «доказать», что (-1)*(-1)=1, учителя и большинство репетиторов не сумеют, да еще будут отмазываться тупым возражением — «по определению»…

Речь шла о самых обычных правилах доказательства совпадения двух множеств. А совпадает с В, если любой элемент из А лежит в В и, наоборот, любой элемент из В лежит в А. Теперь по поводу очевидности. Надо понимать, что очевидный для репетитора (или для сильного десятиклассника) факт, далеко всегда очевиден слабому ученику, о подаче материала которому как раз и идет речь в статье. По уму — вообще вся школьная математика состоит из «совершенно очевидных фактов». Только почему-то дети воспринимают их по-разному. Рад за то, что Ва очевидны формулы. Но это Вам очевидно. А другому человеку? Репетитор должен уметь смотреть на математику глазами школьника, моделируя у себя в голове его мысли. Математик и репетитор — несколько разные профессии. Вы смотрите на триг. формулы глазами математика, а мне приходится смотреть на них глазами репетитора. Методика — это наука о том, как добиться наилучших результатов в понимании и закреплении материала большей части класса, в которой, как правило, процент сильных детей невысок. На практике репетитору довольно часто приходится разжевывать простейшее, иначе не добиться понимания фактов у определенной категории учащихся.

Мне кажется ученикам не понятно когда в ходе объяснения используется числовая окружность, не проще использовать график функции. А если кто-то не понимает что за корень с -1 в степени н, то можно просто ответ записывать в виде двух корней. Потом поймут что это одно и то же.

Во-первых, на графике не видна причина периодичности синуса и косинуса. Слишком он оторван от определения, которое формулируется на координатах ТОЧЕК КРУГА. Во-вторых, репетитору по математике будет сложнее объяснить и, соответственно, научить использовать длину периода. В-третьих, на графике практически невозможно показывать пересечения корней разных уравнений (если это потребуется). Его преимущество состоит только в лучшей демонстрации бесконечности множества корней изучаемых уравнений.

🎦 Видео

Уравнение sinx=aСкачать

Уравнение sinx=a

Как решать уравнения sinx=aСкачать

Как решать уравнения sinx=a

Уравнение sin x = a, формула, примеры решения.Скачать

Уравнение sin x = a, формула, примеры решения.

Решение уравнения sinx=aСкачать

Решение уравнения sinx=a

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение уравнений вида sin x = aСкачать

Решение уравнений вида sin x = a

Алгебра 10 класс. Тригонометрия. Уравнения: sinx=a.Скачать

Алгебра 10 класс. Тригонометрия. Уравнения: sinx=a.

Простейшее тригонометрическое уравнение sin x = aСкачать

Простейшее тригонометрическое уравнение sin x = a

Решение простейших тригонометрических уравнений sinx=aСкачать

Решение простейших тригонометрических уравнений sinx=a

Уравнение sin x = a. Откуда минус один в степени?Скачать

Уравнение sin x = a. Откуда минус один в степени?

Решение уравнений sinx=a | Тригонометрия | Тригонометрические уравнения | Лекция 5.1Скачать

Решение уравнений sinx=a | Тригонометрия | Тригонометрические уравнения | Лекция 5.1

Уравнение sin x = aСкачать

Уравнение sin x = a

Решение уравнения вида sinx=aСкачать

Решение уравнения вида sinx=a

Простейшее уравнение sin x = a.Скачать

Простейшее уравнение sin x = a.

Простейшее тригонометрическое уравнение sinx=aСкачать

Простейшее тригонометрическое уравнение sinx=a

Решение уравнений вида tg x = a и ctg x = aСкачать

Решение уравнений вида tg x = a и ctg x = a
Поделиться или сохранить к себе: