Уравнение Бернулли для реальной и идеальной жидкости
Уравнение Бернулли позволяет выполнить расчет водоснабжения и отопления: Подобрать диаметры и насосы. В этой статье будет расписан энергетический и геометрический смысл уравнения Бернулли.
График Бернулли и уравнение Бернулли для идеальной жидкости:
График Бернулли и уравнение Бернулли для реальной жидкости:
Смысл уравнения Бернулли
Смысл уравнения Бернули в том, чтобы показать, что внутри системы заполненной жидкостью (участка трубопровода) сохраняется общая энергия между разными точками. То есть на участке трубопровода необходимо выделить две точки, и эти две точки равны друг другу по значению полной энергии. Полная энергия состоит из потенциальной и кинетической энергии.
Назначение уравнения Бернули
Понять, как распределяется давление в системе трубопроводов. А также с помощью уравнения находить неизвестные параметры внутри системы. Например, найти давление в каждой течке пространства системы заполненной жидкостью.
Подробнее на видео: (для запуска видео кликните по окошку) На видео намного больше информации
Решая задачу с уравнением Бернулли, Вы фактически занимаетесь гидравлическим расчетом. О том, как делать гидравлический расчет — написано тут: Конструктор водяного отопления
Задача. Пример решения уравнения Бернулли
По решению задачи необходимо найти давление в точке 2 при известных параметрах: давление и расход.
Как понять уравнение Бернулли?
Для расчета уравнения Бернулли необходимо выбрать две точки в пространстве
Точка 1 – это место где известно давление
Точка 2 – это место где нужно узнать давление
Поймите, что каждый кусок формулы измеряется давлением: м.в.ст. (метр водяного столба)
То есть для того, чтобы быстро считать гидравлику систем водоснабжения и отопления, необходимо меньше всего выражаться в Барах, Паскалях и тому подобное.
Проще выражать давление в единице измерения: м.в.ст. (метр водяного столба)
Вы этим самым упростите себе жизнь… просто другая единица это еще один процесс, который отнимает время.
Сборка формулы уравнения Бернулли
Как избавится от минуса?
Как избавится от множителя (-1)?
Необходимо множитель (-1) помножить на каждый слагаемый член. Знак каждого слагаемого члена меняется на противоположный. То есть (+ на -) (- на +). Далее перестановка слагаемых.
Что такое идеальная жидкость?
Идеальная жидкость — это жидкость, не обладающая внутренним трением. То есть такая жидкость не создает гидравлическое сопротивление.
Реальная жидкость — это жидкость, которая обладает вязкостью. То есть внутренним сопротивлением.
Формула Бернулли для реальной жидкости
Коэффициент Кориолиса – это поправка кинетической энергии на реальную жидкость.
Потому что реальная жидкость движется не равномерно
У реальной жидкости серединная струйка воды движется быстрее остальных. При ламинарном режиме градиент: Чем ближе к стенке, тем медленнее движется поток воды.
Формула коэффициента Кориолиса
Что такое коэффициент Кориолиса?
Коэффициент Кориолиса характеризует отношение действительной кинетической энергии потока жидкости в данном сечении к той кинетической энергии потока, которую он имел бы, если бы все частицы двигались с одинаковой скоростью, равной средней скорости потока.
Чему равен коэффициент Кориолиса?
Нд.п. – Это динамические потери. Это потери вызванные движением воды.
Имеются дополнительные задачи с уравнением Бернули на реальную жидкость:
Посмотрите видеоурок по составлению уравнения Бернулли:
Как сделать гидравлический расчет погружного насоса?
Видео:Закон БернуллиСкачать
Физический смысл и графическая интерпретация уравнения Бернулли
Для понимания физического смысла уравнения Бернулли все его слагаемые могут быть представлены графически. Для этого надо в выбранных сечениях установить пьезометры и скоростные трубки Пито (рис. 1.14). Геометрический смысл уравнения Бернулли заключается в том, что при установившемся движении сумма четырех высот в каждом живом сечении потока есть величина постоянная и равна полной высоте — напору Н. Если соединить уровни жидкости в пьезометрах, то получим пьезометрическую линию. Падение пьезометрической линии на единицу длины потока называют пьезометрическим уклоном 1р, который выражают следующей зависимостью:
где / — длина потока между сечениями 1-1 и 2-2, у = pg. Пьезометрический уклон может быть как положительным, так и отрицательным.
Если соединить уровни жидкости в скоростных трубках Пито, то получим линию полного напора. Падение линии полного напора на единицу длины называют гидравлическим уклоном I и выражают зависимостью:
Линия полного напора всегда понижается. Гидравлический уклон всегда положителен, т. к. при движении реальной жидкости часть напора затрачивается на преодоление сил трения.
При равномерном прямолинейном движении жидкости линия полного напора будет параллельна пьезометрической линии и гидравлический уклон будет равен пьезометрическому: Ip = /. Равномерное движение происходит под влиянием перепада пьезометрических напоров Н и Н2. Так как уклоны 1Р и / совпадают, то уравнение Бернулли можно упростить до вида Н-Н2 = hw. Это значит, что равномерное движение напорных потоков возможно за счет перепада давленияр-р2 вдоль потока и (или) за счет разности удельных энергий положения z — z2.
Для безнапорного потока в условиях постоянного давления окружающей среды равномерное прямолинейное движение является результатом действия составляющей силы тяжести в направлении движения. Следовательно, оно может происходить в поле сил тяжести только сверху вниз по течению за счет падения потенциальной энергии z — z2. Чем больше эта величина, т. е. чем больше пьезометрический и гидравлический уклоны 1Р = /, тем больше при прочих равных условиях скорость течения жидкости.
Физический смысл уравнения Бернулли заключается в том, что с энергетической точки зрения оно представляет тот или иной вид удельной энергии, т. е. энергию, приходящуюся на единицу веса жидкости (табл. 1.4).
Геометрическая и энергетическая интерпретация уравнения Бернулли
Г еометрический смысл
высота положения, геометрический напор
удельная энергия положения
удельная энергия давления
потенциальная удельная энергия давления
скоростная высота, скоростной напор
удельная кинетическая энергия
потери удельной энергии
Полная удельная энергия потока состоит из удельной энергии положения, удельной энергии давления и удельной кинетической энергии, которая уменьшается по длине потока в направлении движения из-за преодоления сил трения. Таким образом, уравнение Бернулли представляет собой сумму потенциальной, и кинетической удельных энергий и выражает частный случай общего закона сохранения энергии в природе. Если вдоль струйки жидкости энергия одного вида, например кинетическая, увеличивается, то потенциальная энергия на столько же уменьшается. Поэтому, например, при сужении потока, текущего по трубопроводу, когда скорость потока увеличивается (т. к. через меньшее сечение за то же время проходит такое же количество жидкости, как и через большее сечение), давление, соответственно, в нем уменьшается.
Уравнение Бернулли имеет большое значение в гидравлике и технической гидродинамике: оно используется при расчетах трубопроводов, насосов, при решении вопросов, связанных с фильтрацией, и т. д.
Видео:Урок 133. Закон Бернулли. Уравнение БернуллиСкачать
Лекция 4
4.1. Уравнение Бернулли для жидкости
Рассмотрим поток жидкости, проходящий по трубопроводу переменного сечения (рис. 10). В первом сечении гидродинамический напор пусть равен H1. По ходу движения потока часть напора H1 необратимо потеряется из-за проявления сил внутреннего трения жидкости и во втором сечении напор уменьшится до H2 на величину потерь напора H.
Уравнение Бeрнýлли для жидкости в самом простейшем виде записывается так:
то есть это уравнение для двух сечений потока в направлении его течения, выраженное через гидродинамические напоры и отражающее закон сохранения энергии (часть энергии переходит в потери) при движении жидкости.
Уравнение Бeрнýлли в традиционной записи получим, если в последнем равенстве раскроем значения гидродинамических напоров H1 и H2 (м) :
.
Энергетический смысл уравнения Бeрнулли заключается в том, что оно отражает закон сохранения энергии: сумма потенциальной z+hp, кинетической v2/2g энергии и энергии потерь H остаётся неизменной во всех точках потока.
4.2. Геометрическая интерпретация уравнения Бернулли
Положение любой частицы жидкости относительно некоторой произвольной линии нулевого уровня 0-0 определяется вертикальной координатой Z. Для реальных гидравлических систем это может быть уровень, ниже которого жидкость из данной гидросистемы вытечь не может. Например, уровень пола цеха для станка или уровень подвала дома для домашнего водопровода.
· Как и в гидростатике, величину Z называют нивелирной высотой.
· Второе слагаемое — носит название пьезометрическая высота. Эта величина соответствует высоте, на которую поднимется жидкость в пьезометре, если его установить в рассматриваемом сечении, под действием давления P.
· Сумма первых двух членов уравнения ¾ гидростатический напор.
· Третье слагаемое в уравнения Бернулли называется скоростной высотой или скоростным напором. Данную величину можно представить как высоту, на которую поднимется жидкость, начавшая двигаться вертикально со скорость u при отсутствии сопротивления движению.
· Сумму всех трёх членов (высот) называют гидродинамическим или полным напором и, как уже было сказано, обозначают буквой Н.
Все слагаемые уравнения Бернулли имеют размерность длины и их можно изобразить графически.
4.3. Энергетическая интерпретация уравнения Бернулли
Выше было получено уравнение Бернулли с использованием энергетических характеристик жидкости. Суммарной энергетической характеристикой жидкости является её гидродинамический напор.
С физической точки зрения это отношение величины механической энергии к величине веса жидкости, которая этой энергией обладает. Таким образом, гидродинамический напор нужно понимать как энергию единицы веса жидкости. И для идеальной жидкости эта величина постоянна по длине. Таким образом, физический смысл уравнения Бернулли это закон сохранения энергии для движущейся жидкости.
.
Физический смысл слагаемых, входящих в уравнение следующий:
· Z — потенциальная энергия единицы веса жидкости (удельная энергия) – энергия, обусловленная положением (высотой) единицы веса жидкости относительно плоскости сравнения (нулевого уровня), принимаемой за начало отсчета;
· — потенциальная энергия единицы веса жидкости — энергия, обусловленная степенью сжатия единицы веса жидкости, находящейся под давлением ;
· — полная потенциальная энергия единицы веса жидкости;
· — кинетическая энергия единицы веса жидкости — энергия, обусловленная движением единицы веса жидкости со скоростью u;
· H — полная энергия единицы веса жидкости (полная удельная энергия).
4.4. Уравнение Бернулли для потока реальной жидкости
В реальных потоках жидкости присутствуют силы вязкого трения. В результате слои жидкости трутся друг об друга в процессе движения. На это трение затрачивается часть энергии потока. По этой причине в процессе движения неизбежны потери энергии. Эта энергия, как и при любом трении, преобразуется в тепловую энергию. Из-за этих потерь энергия потока жидкости по длине потока, и в его направлении постоянно уменьшается. Т. е. напор потока Hпотока в направлении движения потока становится меньше. Если рассмотреть два соседних сечения 1-1 и 2-2, то потери гидродинамического напора Δh составят:
,
где H1-1— напор в первом сечении потока жидкости,
H2-2 — напор во втором сечении потока,
∆h — потерянный напор — энергия, потерянная каждой единицей веса движущейся жидкости на преодоление сопротивлений на пути потока от сечения 1-1 до сечения 2-2.
С учётом потерь энергии уравнение Бернулли для потока реальной жидкости будет выглядеть
Индексами 1 и 2 обозначены характеристики потока в сечениях 1-1 и 2-2.
Если учесть, что характеристики потока V и α зависят от геометрии потока, которая для напорных потоков определяется геометрией трубопровода, понятно, что потери энергии (напора) в разных трубопроводах будут изменяться неодинаково. Показателем изменения напора потока является гидравлический уклон I, который характеризует потери напора на единице длины потока. Физический смысл гидравлического уклона – интенсивность рассеяния энергии по длине потока. Другими словами, величина I показывает, как быстро трубопровод поглощает энергию потока, протекающего в нём
.
Изменение энергии по длине потока удобно проследить на графиках. Из уравнения Бернулли для потока реальной жидкости (закона сохранения энергии) видно, что гидродинамическая линия для потока реальной жидкости (с одним источником энергии) всегда ниспадающая. То же справедливо и для пьезометрической линии, но только в случае равномерного движения, когда скоростной напор а уменьшение напора происходит только за счёт изменения потенциальной энергии потока, главным образом за счёт уменьшения давления P.
4.5. Разность напоров и потери напора
Различие в применении терминов «разность напоров» и «потери напора» с одним и тем же обозначениемH поясним на примерах.
Движение жидкости происходит только при наличии разности напоров (H = H1 — H2), от точки с бóльшим напором H1 к точке с меньшим H2. Например, если два бака, заполненных водой до разных высотных отметок, соединить трубопроводом, то по нему начнётся перетекание в бак с меньшей отметкой уровня воды под влиянием разности напоров H, равной в этом случае разности отметок уровней воды в баках. При выравнивании уровней напоры в обоих баках становятся одинаковыми H1 = H2 , разность напоров H=0 и перетекание прекращается.
Потери напора H отражают потерю полной энергии потока при движении жидкости. Если в предыдущем примере на трубе установить задвижку и закрыть её, то движение воды прекратится и потерь напора не будет (H = = 0), однако разность уровней воды будет создавать некоторую разность напоров H. После открывания задвижки вода вновь начнёт перетекать по трубе и общие потери напора в трубопроводе при движении из одного бака в другой будут равны разности напоров в баках H = H1 — H2 , то есть мы опять пришли к уравнению Бернулли.
Таким образом, «разность напоров» является причиной движения воды, а «потеря напора» — следствием. При установившемся движении жидкости они равны. Измеряются они в одних и тех же единицах СИ: метрах по высоте.
Обычно в гидравлических задачах при известных v или q определяемая величина H назывется потерей напора и, наоборот, при определении v или q известная H — разностью напоров.
4.6. Связь давления и скорости в потоке
Связь давления и скорости в потоке жидкости — обратная: если в каком-то месте потока скорость увеличивается, то давление здесь малó, и, наоборот, там, где скорости невелики, давление повышенное. Эту закономерность объясним на основе уравнения Бернýлли.
Рассмотрим работу водоструйного насоса (см. рис. 11). На подходе по нагнетательному трубопроводу 1 поток рабочей жидкости имеет относительно небольшую скорость v1 и высокое избыточное давление pизб1. Проходя через соплó 2, поток сужается, скорость его резко возрастает до v2. Для дальнейших рассуждений запишем уравнение Бернýлли так:
.
Здесь нет z1 и z2, так как труба горизонтальная, а величиной потерь напора DH» 0 пренебрегаем. Так как в правой части уравнения кинетическая составляющая энергии потока резко возросла из-за увеличения v2, то потенциальная составляющая, связанная с избыточным давлением после соплá pизб2, наоборот, уменьшится. Величину pизб2 можно выразить из этого уравнения и найти численное значение. Если pизб2 получается отрицательным, то, значит, возник вакуум (полное давление в струе стало меньше атмосферного). В последнем случае пьезометрическая линия опустится ниже отметки самой струи (см. рис 11).
Таким образом в струе рабочей жидкости после соплá образуется область пониженного давления или даже вакуум, что вызывает подсос транспортируемой жидкости по всасывающему трубопроводу 3 (см. рис. 11). Далее обе жидкости смешиваются в горловине 4 и транспортируются по отводящему трубопроводу 5.
Водоструйные насосы не имеют трущихся частей, в этом их преимущество перед механическими. По их принципу работают также эжекторы, гидроэлеваторы, насосы для создания вакуума.
🎥 Видео
Уравнение Бернулли. Диаграмма Бернулли.Скачать
Гидродинамика. Вывод уравнения БернуллиСкачать
Уравнение Бернулли гидравликаСкачать
Урок 134. Применения уравнения Бернулли (ч.1)Скачать
Уравнение БернуллиСкачать
Закон БернуллиСкачать
10. Уравнения БернуллиСкачать
Уравнение Бернулли и его приложения | Гидродинамика, ГидравликаСкачать
Уравнение Бернулли для потока жидкостиСкачать
Галилео. Эксперимент. Закон БернуллиСкачать
Гидродинамика. Уравнение Бернулли. Физика 10 классСкачать
Закон Бернулли и движение по инерцииСкачать
Закон БернуллиСкачать
Уравнение Бернулли. Практическая часть. 10 класс.Скачать
УРАВНЕНИЕ БЕРНУЛЛИ | УЧЕБНЫЙ ФИЛЬМ ПО ГИДРАВЛИКЕСкачать
Точка науки, закон БернуллиСкачать