ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
Пусть: z — переменная величина с областью изменения R; R- числовая прямая; D — область на координатной плоскости R2.
Любое отображение D->R называют функцией двух переменных с областью определения D и пишут z = f(x;y).
Если каждой паре (х; у) двух независимых переменных из области D по некоторому правилу ставится в соответствие одно определенное значение z из R, то переменную величину z называют функцией двух независимых переменных х и у с областью определения D и пишут
Аналогичным образом определяются функции многих переменных
П р и м е р 1. Найти и изобразить область определения функции
Область определения – есть плоскость хОу за исключением точек, лежащих на параболе у = х2, см. рисунок.
П р и м е р 2. Найти и изобразить область определения функции
Область определения – есть часть плоскости, лежащая внутри круга радиуса г = 3 , с центром в начале координат, см. рисунок.
П р и м е р 3. Найти и изобразить область определения функции

К числу функций нескольких переменных относятся производственные функции.
Производственными функциями называют функции, представляющие зависимости величин объемов выпускаемой продукции от переменных величин затрат ресурсов.
Производственные функции применяются не только в микроэкономических, но и в макроэкономических расчетах.
Простейшая производственная функция — функция зависимости объема произведенной работы V от объемов трудовых ресурсов R и вложенного в производство капитала К
2.ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ФУНКЦИИ ДВУХ
2.1.График функции двух переменных
Рассмотрим в пространстве прямоугольную систему координат и область D на плоскости хОу. В каждой точке М(х;у) из этой области восстановим перпендикуляр к плоскости хОу и отложим на нем значение z = f(x; у). Геометрическое место полученных точек
является пространственным графиком, функции двух переменных.
Это некоторая поверхность.
Равенство z = f(x; у) называется уравнением этой поверхности.
Функция двух переменных имеет наглядную геометрическую интерпретацию. Для функции числа переменных n > 2 аналогом поверхности является гиперповерхность (n + 1) — мерного пространства, не имеющая геометрической интерпретации.
Линией уровня функции двух переменных z = f(x; у) называется линия f(x; у) = С (С = const) на плоскости хОу, в каждой точке которой функция сохраняет постоянное значение С.
Линия уровня представляет собой сечение поверхности графика функции двух переменных z = f(x; у) плоскостью z = С.
Поверхностью уровня функции трех переменных
u = f(x; у; z) называется поверхность в R3 (трехмерном пространстве), в каждой точке которой функция сохраняет постоянное значение f(x;y;z) = C (С = const).
П р и м е р. Найти и построить линии уровня функции

Линии уровня z = С данной функции имеют уравнения
Это окружности с центром в начале координат, радиусом R = C1/2 и уравнением
x2 + y2 = R2, см. рисунок.
Линии уровня позволяют представить рассматриваемую поверхность, дающую в сечении плоскостями z = C концентрические окружности.
При построении графика функции часто пользуются методом сечений.
П р и м е р. Построить график функции 

Решение. Воспользуемся методом сечений.






Искомая поверхность – параболоид вращения.
Расстоянием между двумя произвольными точками 


Множество точек 
Открытый круг радиуса ε с центром в точке A называется — ε — окрестностью точки А.
Найти и изобразить графически область определения функции:
Построить линии уровня функций:
3. ПРЕДЕЛ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ
Основные понятия математического анализа, введенные для функции одной переменной, распространяются и на функции нескольких переменных.
О п р е д е л е н и е:
Постоянное число А называется пределом функции двух переменных z = f(x;у) при х —> х0, у —> у0, если для любого
ε >0 существует δ >0 такое, что |f(х; у) — А| 0 — постоянное число.
Постоянное число А называется пределом функции двух переменных f(x;y) = f(M) при стремлении точки М к точке М0, если для любого ε >0 можно найти такое число г >0, что как только расстояние |М0М| 0.
Предел отношения 
водной функции z = f(х; у) в точке (х; у) по направлению вектора 
Переходя к этому пределу, получим

Таким образом, зная частные производные функции
z = f(x; у) можно найти производную этой функции по любому направлению, а каждая частная производная является частным случаем производной по направлению.
П р и м е р. Найти производную функции
в точке М(1;0) в направлении, составляющем с Ох угол в 30°.
Следовательно, функция z = f(x;y) в данном направлении возрастает.
Градиентом функции z = f(x; у) называется вектор 
Связь между производной функции по направлению и градиентом этой функции осуществляется соотношением
т. е. производная функции z = f(x;y) в данном направлении 
Градиент функции в каждой точке направлен по нормали к соответствующей линии уровня данной функции.
Направление градиента функции в данной точке есть направление наибольшей скорости возрастания функции в этой точке.
- Примеры решений задач: функции нескольких переменных
- Примеры: область определения ФНП
- Примеры: частные производные ФНП
- Градиент, производная по направлению
- Касательная плоскость и нормаль
- Экстремумы функции нескольких переменных
- Приближенные вычисления
- Ряд Тэйлора
- Наибольшее и наименьшее значение в области
- Решение контрольной
- Помощь с решением заданий
- Функции многих переменных примеры с решением
- Основные понятия о функциях многих переменных
- Определение функции многих переменных. Функция двух переменных и ее графическое изображение
- Экономические задачи, приводящие к понятию функций многих переменных
- Функции многих переменных. Понятие функции многих переменных
- 📽️ Видео
Видео:Область определения функции нескольких переменных (часть 1). Высшая математика.Скачать

Примеры решений задач: функции нескольких переменных
В этом разделе вы найдете готовые задания разного типа для функций нескольких переменных:
Видео:Математика без Ху!ни. Функции нескольких переменных. Область определения. Линии уровня.Скачать

Примеры: область определения ФНП
Задача 1. Найти область определения функции двух переменных $z=f(x,y)$. Изобразить ее на координатной плоскости и заштриховать.
Задача 2. Для данной функции найти область определения и изобразить ее на рисунке в системе координат.
Видео:2. Область определения функции двух переменныхСкачать

Примеры: частные производные ФНП
Задача 3. Найти частные производные: $z=tg^3 (3x-4y)$
Задача 4. Найти частные производные второго порядка $z=sqrt$
Задача 5. Найти частные производные сложной функции:
$$ z=u^2 cdot ln v; quad u=frac, , v=x^2+y^2.$$
Задача 6. Проверить справедливость теоремы о смешанных производных второго порядка.
Задача 7. Найти полный дифференциал данной функции
Задача 8. Найти дифференциал второго порядка функции:
Задача 9. Для функции $z(x,y)$ двух переменных, неявно заданной уравнением $sin(xz)+cos(yz)=1$, найдите первый и второй дифференциалы в точке $x=y=1, z=0$.
Задача 10. Проверить, удовлетворяет ли функция двух переменных $z(x,y)$ указанному дифференциальному уравнению.
Видео:Функция. Область определения функции. Практическая часть. 10 класс.Скачать

Градиент, производная по направлению
Задача 11. Найти производную функции $f(x,y,z)$ в точке $M(x_0,y_0,z_0)$ по направлению вектора $overline$. Вычислить наибольшую скорость изменения функции в данной точке.
Задача 13. Найдите градиент, производную по направлению $overline$ и матрицу Гессе в точке $M$ заданной функции, где $u=f(x,y,z)=x^2z+z^2x^2+y^3$, $overline=$, $M(1,3,1)$.
Задача 14. Найти производную функции $u$ в точке $M$ по направлению нормали к поверхности $S$, образующей острый угол с положительным направлением оси $Oz$.
Видео:Область определения функции - 25 функций в одном видеоСкачать

Касательная плоскость и нормаль
Задача 15. Составить уравнения касательной плоскости и нормали к поверхности $x^2+y^2-x+2y+4z-13=0$ в точке $M(2,1,2)$.
Задача 16. Для кривой $overline=overline(t)$ найти в точке $t_0$ уравнение касательной, уравнение нормальной плоскости и вычислить кривизну линии.
$$ overline(t)=(t^2-3)overline + (t^3+2)overline+ln t overline, quad t_0=1 $$
Задача 17. Найти градиент, первый дифференциал, матрицу вторых производных, второй дифференциал функции $z=2xy-xy^4+5y^3-3$ в точке $A(2,-3)$. Составить уравнения касательной плоскости и соприкасающегося параболоида к графику данной функции.
Видео:Область определения функции нескольких переменныхСкачать

Экстремумы функции нескольких переменных
Задача 18. Найти точки экстремума функции $z=x^2+xy+y^2+2x-y$.
Задача 19. Найти точки локального экстремума и экстремальные значения $z=x^2+y^2-xy+x+y$.
Задача 20. Исследовать на экстремум функцию $z=x^4+xy+fracy^2+5$.
Задача 21. Определите, при каких значениях параметра $a$ функция $z(x,y)=x^3+y^3+4xy-7x-7y+a(x-1)^2+a(y-1)^2$ в точке (1;1):
А) имеет максимум,
Б) имеет минимум,
В) не имеет экстремума.
Задача 22. Найдите (локальные) экстремумы функции трех переменных $f(x,y,z)=2x^2-xy+2xz-y+y^3+z^2$.
Видео:Найти область определения функций двух переменныхСкачать

Приближенные вычисления
Задача 23. Вычислить приближенно значение функции $Z=Z(x,y)$ и данной точке с помощью дифференциала.
Задача 24. Дана функция $z=x^2+2xy+3y^2$ и две точки $А (2; 1)$ и $В (1,96; 1,04)$. Требуется:
1) вычислить точное значение функции в точке $В$;
2) вычислить приближённое значение функции в точке $В$, исходя из значения функции в точке $А$ и заменив приращение функции при переходе от точки $А$ к точке $B$ дифференциалом;
3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом.
Видео:Алгебра 9. Урок 10 - Функция. Область определения.Скачать

Ряд Тэйлора
Задача 25. Разложите функцию $f(x,y)=x^2ln y + y^2$ по формуле Тейлора (с остаточным членом в форме Пеано) в окрестности точки $M(2;1)$ до членов второго порядка включительно. Выпишите первый и второй дифференциалы заданной функции.
Задача 26. Найти первые и вторые частные производные функции $F$ и записать формулу Тэйлора в указанной точке $x^0$.
Видео:9 класс, 15 урок, Определение числовой функции. Область определения, область значения функцииСкачать

Наибольшее и наименьшее значение в области
Задача 27. Найти наименьшее $m$ и наибольшее $M$ значения функции $z=f(x,y)=3-2x^2-xy-y^2$ в замкнутой области $D$, заданной системой неравенств $-1 le x le 1; 0le y le 2$. Сделать чертёж области $D$.
Задача 28. Экстремумы функций нескольких переменных. Требуется найти наибольшее и наименьшее значения функции $z=5x^2-3xy+y^2+4$ в области, ограниченной заданными линиями $x=0, y=0, x+y=2$.
Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Решение контрольной
Контрольное задание. Дана функция $f(x,y)=x^2+y^2-3xy$
1. Исследовать функцию $f$ на экстремум. Найти экстремальные значения функции.
2. Найти наибольшее и наименьшее значения функции $f$ в заданной области $D$.
3. Составить уравнение касательной плоскости к поверхности $z=f(x,y)$ в точке, где $x=x_0=1$, $y=y)0=3$.
4. Найти величину наибольшей скорости возрастания функции $f$ в точке $M_1(-1;1)$.
5. Вычислить производную функции $f$ в точке $M_1$ в направлении вектора $overline$. Каков характер изменения функции? Почему?
6. Найти угол между градиентами функции $f$ в точках $M_1$ и $M_2(2;2)$. Построить векторы и указать угол.
Видео:ГРАФИК ФУНКЦИИ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

Помощь с решением заданий
Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.
Видео:СПОРИМ ты поймешь Математику — Функция и ее свойства, Область определения, Нули ФункцииСкачать

Функции многих переменных примеры с решением
Содержание:
Видео:Область определения функции двух переменных - bezbotvyСкачать

Основные понятия о функциях многих переменных
Изучение связей и закономерностей, существующих в материальном мире, часто приводят к функции не одной, а многих переменных. Эти функции позволяют выражать более сложные зависимости, чем функции одной переменной. Поэтому теория функций многих переменных имеет широкое практическое применение в различных отраслях.
Определение функции многих переменных. Функция двух переменных и ее графическое изображение
Переменные x1, x2, . xn называются независимыми между собой, если каждая из них может принимать произвольные значения в своей области изменения независимо от того, какие значения принимают при этом другие переменные.
Определение 1. Функцией многих переменных u = f (x1, x2, . xn) называется такая закономерность, при которой переменным x1, x2, . xn из некоторого множества D ⊂ R n ставится в соответствие одно значение u из множества E ⊂ R’.
Например:
Множество D называется областью определения функции u = f (x1, x2, . xn), а множество E — областью значений этой функции. Например, функция 
Частным случаем функции многих переменных есть функция двух переменных z = f (x, y), для которой можно дать понятие графика функции. В общем случае графиком такой функции является поверхность в трехмерном пространстве R 3 .
Пример 1. z = x 2 + y 2 . Графиком этой функции является параболоид вращения (рис. 1).
Экономические задачи, приводящие к понятию функций многих переменных
Приведем примеры конкретных функций многих переменных, которые встречаются в экономических задачах.
Пример 2. Пусть предприятие выпускает только один товар, и на его выпуск затрачивается только одно сырье (один ресурс). Предприятие характеризуется полностью своей производственной функцией y = f (x) — зависимость объема выпущенного товара y от объема затраченного сырья x. Такая производственная функция называется одноресурсной.
Если на производство продукции определенного типа расходуются многие виды сырья (ресурсов) x1, x2, . xn , то такая производственная функция называется многоресурсной или многофакторной:
y= F (x) = F (x1, x2, . xn).
Наиболее известной производственной функцией является функция Кобба-Дугласа y = AK α L β , где A, α, β — неотрицательные константы, причем α + β ≤ 1;
K — объем фондов в стоимостном или натуральном выражении;
L — объем трудовых ресурсов — число работников, число человеко-дней;
y — выпуск продукции в стоимостном или натуральном выражении.
На этом примере видно, что функция Кобба-Дугласа является функцией двух независимых переменных K и L.
Пример 3. Рассмотрим основное уравнение классической количественной теории денег, которое называется уравнением обмена Фишера: MV = PY.
В данном уравнении любая из переменных M, V, P, Y может рассматриваться как функция трех переменных, где
M — это общее количество денег, имеющихся в обороте;
V — скорость их оборота (сколько раз каждый рубль участвует в расчетах в среднем за год);
Y — национальный продукт или доход (национальный продукт — это все готовые товары и услуги, произведенные в экономической системе в стоимостном выражении; национальный доход — это все выплаты, полученные домашними хозяйствами: заработная плата, рента, прибыль; национальный продукт и национальный доход численно равны);
P — уровень цен (среднее взвешенное значение цен готовых товаров и услуг, которые определены относительно базового показателя, принятого за единицу).
Пусть 
Функции многих переменных. Понятие функции многих переменных
Ранее рассматривались числовые функции 







Определение 1. Пусть имеются два множества 









Как и ранее, 



Для функций двух переменных ( 



Функция двух переменных геометрически определяет некоторую поверхность в 










Поверхность 




Другим примером функции двух переменных может служить эллиптический параболоид 



Уравнением 



Еще одним примером функции многих переменных может служить производственная функция Кобба-Дугласа. Ее классический вид

где 












Исследования показали, что зависимость (3) редко встречается на практике. Поэтому справедлив более общий вид производственной функции Кобба-Дугласа:

где 





Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
📽️ Видео
Область определения функцииСкачать

Алгебра 9 класс. Область определения функцииСкачать

Область определения тригонометрических функцийСкачать

Функция. Область определения и область значений функцииСкачать

Область определения функции-2Скачать

Область определения функцииСкачать

Алгебра 9 класс (Урок№1 - Функция. Область определения функции)Скачать







































