Практика приемных экзаменов в вузы показывает, что при решении тригонометрических уравнений абитуриенты нередко затрудняются как в выборе способа решения уравнения, так и при отборе его корней.
Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений специфична. Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнения. Запись ответа тригонометрического уравнения часто связана с понятиями объединения и пересечения множеств. Обычно при решении таких уравнений получают серии корней, и в окончательном варианте ответ записывают в виде объединения этих серий. Но как быть, если эти серии пересекаются? Надо ли исключать повторяющиеся корни решения или этого можно не делать?
С понятием пересечения множеств связан и еще один важный вопрос: в ответе не должно быть значений переменной, при которых выражения в левой или правой частях уравнения не определены. Такие значения надо исключить. Для этого надо уметь находить пересечение различных серий.
В предлагаемой работе на конкретных примерах рассматриваются различные способы и приемы при выборе ответа. Надеемся, что данная работа поможет учителям старших классов и самим учащимся при подготовке к вступительным экзаменам в вузы.
1. Отбор чисел на тригонометрическом круге
Проблему отбора корней, отсеивания лишних корней при решении тригонометрических уравнений часто можно решить с помощью изображения чисел на тригонометрическом круге. В ряде случаев этот прием, на наш взгляд, более наглядный и убедительный.
Пример 1. cos x + cos 2x – cos 3x = 1.
2sin x sin 2x – 2sin 2 x = 0,
.
Из рис. 1 видно, что серия x3(*) включает в себя один из корней серии x1( · ).
Ответ:
Пример 2. tg x + tg 2x – tg 3x = 0.
Серия x2(*) не удовлетворяет ОДЗ (рис. 2). Серия x1( o ) входит в серию x3( · ), поэтому ответ можно записать одной формулой:
Пример 3.
sin 2x (2cos 2x cos x + cos 7x) = 0,
sin 2x (cos 3x + cos x + cos 7x) = 0,
sin 2x (cos 3x + 2cos 4x cos 3x) = 0,
sin 2x cos 3x (1 + 2cos 4x) = 0,
Объединяя все три серии корней, ответ можно записать так:
Пример 4. sin 2 x + sin 2 2x = sin 2 3x.
– (cos 2x + cos 4x) + 1 + cos 6x = 0,
– 2cos 3x cos x + 2cos2 3x = 0,
cos 3x (cos 3x – cos x) = 0,
cos 3x sin 2x sin x = 0,
Серия корней x2 содержится в серии x1 и x3, в чем легко убедиться, изобразив их различными точками на круге, поэтому
ответ:
Пример 5. sin x + sin 7x – cos 5x + cos (3x – 2 p ) = 0.
2sin 4x cos 3x + 2sin 4x sin x = 0,
sin 4x (cos 3x + sin x) = 0,
Серия x2 содержится в серии корней x1, а на круге (рис. 4) изобразим точками серии x1( · ) и x3(О), которые не совпадают.
Пример 6. ctg 2x + 2ctg x – tg 2x = sin 5x.
ОДЗ
Учитывая ОДЗ, получим
Пример 7.
Иногда случается, что часть серии входит в ответ, а часть нет.
Нанесем на тригонометрический круг (рис. 6) все числа серии
и выбросим корни, удовлетворяющие условию
Оставшиеся решения из серии x1 можно объединить в формулу
2. Отбор корней в тригонометрическом уравнении алгебраическим способом
Изображение корней на тригонометрическом круге не всегда удобно, когда период меньше 2 p .
Пример 8. sin 2 2x + sin 2 3x + sin 2 4x + sin 2 5x = 2.
cos 4x + cos 6x + cos 8x + cos 10x = 0,
2cos 5x cos x + 2cos 9x cos x = 0,
cos x cos 2x cos 7x = 0.
«Период» серий равен p. Рассмотрим те корни из серий x1, x2, x3, которые попадают в промежуток [0; p ]. Это будут:
Сразу видно, что серия x1 содержится в серии x3, а серии x2 и x3 не пересекаются. Значит, ответ можно записать в виде .
Способ алгебраический. Общим знаменателем в сериях x1 и x2 будет 4:
Если x1 = x2, то 2 + 4k = 1 + 2l, но слева – четное число, а справа – нечетное. Равенство невозможно, серии x1 и x2 не пересекаются. Аналогично получаем, что серии х3 и х2 тоже не пересекаются, а вот для серий x1 и x3 получаются формулы
Из равенства 7 + 14k = 1 + 2m получаем m = 7k + 3. Это означает, что для всякого k найдется целое m такое, что будет выполняться равенство 7 + 14k = 1 + 2m, т. е. всякий корень из серии x1 встретится и в серии x3, поэтому серия x1 содержится в серии x3, и в ответе писать ее не надо.
При решении некоторых тригонометрических уравнений их заменяют эквивалентной системой уравнений, а затем находят пересечение множеств решений. Эти пересечения часто найти легко. Но иногда для нахождения решений необходимо решать диафантово уравнение (ax + by = c).
Пример 9.
В данном случае сделать отбор решений на тригонометрическом круге неудобно, так как периоды серий разные. Найдем такие целые k, при которых x = p + 2 p k имеет посторонние корни, удовлетворяющие условию x № 3 p n, n О Z. Пусть p + 2 p k = 3 p n; 1 + 2k = 3n. Отсюда n = 2m + 1 Ю k = 3m + 1. Итак, посторонние корни в серии x = p + 2 p k будет при k = 3m + 1, m О Z.
Пример 10. cos 7x (sin 5x – 1) = 0.
Пересекаются ли эти серии? Из равенства
следует 5k = 14n + 1. Выразим ту неизвестную, коэффициент при которой меньше по абсолютной величине:
– целое число.
Ответ можно записать в виде
.
Пример 11.
Поскольку наибольшее значение функции y = cos t равно 1, уравнение равносильно системе
Решением уравнения является пересечение серий x1 и x2, т. е. нам надо решить уравнение
Из него получаем уравнение, имеющее решение k = 8t, n = 3t.
Пример 12.
Решением уравнения является пересечение серий x1 и x2;
,
где – целое число;
Пример 13.
sin 2x sin 4x = 2sin x sin 3x cos x,
sin 2x sin 4x = sin 2x sin 3x,
sin 2x (sin 4x – sin 3x) = 0,
Остается проверить, лежат ли они в области x О R,
Серию x1 проверить легко: поскольку ,
а при n, кратных 8, n = 8l (l О Z), получается как раз x № 2 p l, вся серия x1 исключается. Сложнее обстоит дело с серией x2. Здесь надо выяснить, при каких целых k найдется такое n, что выполняется равенство ,
и исключить такие k. Последнее уравнение приводится к виду 8k + 4 = 7n, причем решать это уравнение надо в целых числах. Из него следует, что n = 4l, поскольку левая часть уравнения делится на 4. Подставляя n = 4l в уравнение, получаем 8k + 4 = 28l, откуда 2k + 1 = 7l. Далее, l должно быть нечетно, l = 2t + 1; поэтому 2k + 1 = 14t + 7, k = 7t + 3. Вот решение и получилось:
Ответ:
3. Отбор корней в тригонометрическом уравнении с некоторыми условиями
Изложенные выше способы отбора корней в тригонометрических уравнениях не всегда применяются в чистом виде: выбор способа зависит от конкретных условий, но иногда эти способы комбинируются.
Пример 14. Найти корни уравнения sin 2x = cos x | cos x |,
удовлетворяющие условию x О [0; 2 p ].
Условию cos x і 0 удовлетворяют
из серии
из серии
Наконец,
Пример 15. Найти все решения уравнения
удовлетворяющие условию
так как то
Пример 16. Найти все решения уравнения
принадлежащие отрезку .
Отметим ОДЗ на тригонометрическом круге (рис. 9):
Отрезку принадлежит только один промежуток из ОДЗ, а именно .
Решим уравнение и выберем корни, принадлежащие этому промежутку:
1 + sin 2x = 2cos 2 3x Ю sin 2x = cos 6x,
Из серии при n = 2 имеем
Из серии при n = 5 имеем
Пример 17.
Ответ:
Пример 18. Найти все корни уравнения
которые удовлетворяют условию .
10sin 2 x = – cos 2x + 3 Ю 10sin 2 x = 2sin 2 x – 1 + 3,
Выберем корни, удовлетворяющие условию задачи. Из серии
При
при .
Аналогично выберем корни, удовлетворяющие условию задачи, из второй серии. Это будут .
Пример 19.
sin x и cos x должны быть одинакового знака, а, учитывая первое неравенство, только при sin x > 0 и cos x > 0 система совместна. Значит, x оканчивается в первой четверти. Имеем
1 + 2sin x cos x = 4sin x cos x Ю sin 2x = 1,
Ответ:
Пример 20.
Ответ:
Пример 21.
а)
Но ctg x 0. Решений нет.
б)
Ответ:
.
Примеры для самостоятельного решения
7. Найти все решения уравнения, принадлежащие указанным промежуткам:
Л. Максименко,
Р. Зинченко,
г. АнгарскСодержание
- Основные методы решения тригонометрических уравнений
- п.1. Разложение на множители
- п.2. Приведение к квадратному уравнению
- п.3. Приведению к однородному уравнению
- п.4. Введение вспомогательного угла
- п.5. Преобразование суммы тригонометрических функций в произведение
- п.6. Преобразование произведения тригонометрических функций в сумму
- п.7. Понижение степени
- п.8. Замена переменных
- п.9. Использование ограничений области значений функций
- п.10. Примеры
- Объединение решений в тригонометрических уравнениях
- 📺 Видео
Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Основные методы решения тригонометрических уравнений
п.1. Разложение на множители
Алгоритм простого разложения на множители
Шаг 1. Представить уравнение в виде произведения (f_1(x)cdot f_2(x)cdot . cdot f_n(x)=0) где (f_i(x)) — некоторые функции (тригонометрические и не только) от (x).
Шаг 2. Решить совокупность уравнений: ( left[ begin f_1(x)=0\ f_2(x)=0\ . \ f_n(x)=0\ end right. )
Шаг 3. Найти объединение полученных решений. Записать ответ.Например:
Решим уравнение (2cosx cos2x=cosx) begin 2cosx cos2x-cosx=0\ cosx(2cos2x-1)=0\ left[ begin cosx=0\ 2cos2x-1=0 end right. Rightarrow left[ begin x=fracpi2+pi k\ cos2x=frac12 end right. Rightarrow left[ begin x=fracpi2+pi k\ 2x=pmfracpi3+2pi k end right. Rightarrow left[ begin x=fracpi2+pi k\ x=pmfracpi6+pi k end right. end
Мы видим, что полученные семейства образуют множество из 6 базовых точек на числовой окружности через каждые (60^=fracpi3)
Поэтому: begin left[ begin x=fracpi2+pi k\ x=pmfracpi6+pi k end right. Leftrightarrow x=fracpi6+frac endВозможно, у вас не сразу получится объединять решения, которые частично пересекаются или дополняют друг друга.
Тогда записывайте ответ в виде полученных семейств.
В рассмотренном примере, это пара (fracpi2+pi k, pmfracpi6+pi k), равнозначная c (fracpi6+frac).
Вот только научиться работать с числовой окружностью нужно обязательно, т.к. чем сложнее пример или задача, тем больше вероятность, что этот навык пригодится.Алгоритм разложения на множители со знаменателем
Шаг 1. Представить уравнение в виде произведения $$ frac=0 $$ где (f_i(x), g_i(x)) — некоторые функции (тригонометрические и не только) от (x).
Шаг 2. Решить смешанную систему уравнений: ( begin left[ begin f_1(x)=0\ f_2(x)=0\ . \ f_n(x)=0\ end right.\ g_1(x)ne 0\ g_2(x)ne 0\ . \ g_m(x)ne 0\ end )
Шаг 3. Найти объединение полученных решений для числителя. Исключить все решения, полученные для знаменателя. Записать ответ.Например:
Решим уравнение (ctgx-tgx=frac)
Левая часть уравнения: $$ ctgx-tgx=frac-frac=frac=frac $$ Подставляем, переносим правую часть влево: $$ frac-frac=0 $$ Выносим общий множитель, умножаем на (1/2) слева и справа, получаем: $$ frac=0 $$ В этом уравнении учтено ОДЗ для (ctgx) и (tgx). Поэтому отдельно его не записываем.
Полученное уравнение равносильно системе: begin begin left[ begin cosx-sinx=0\ cosx+sinx=1 end right.\ sin2xne 0 end end Решаем первое уравнение как однородное 1-й степени (см. этот параграф ниже): begin cosx-sinx=0 |: cosx\ 1-tgx=0Rightarrow tgx=1Rightarrow x=fracpi4+pi k end Решаем второе уравнение введением вспомогательного угла (см. этот параграф ниже): begin cosx-sinx=1 | times frac<sqrt>\ frac<sqrt>cosx+frac<sqrt>sinx=frac<sqrt>\ cosleft(fracpi4right)cosx+sinleft(fracpi4right)sinx=frac<sqrt>\ cosleft(fracpi4-xright)=cosleft(x-fracpi4right)=cosleft(x-fracpi4right)=frac<sqrt> Rightarrow x-fracpi4=pmfracpi4+2pi kRightarrow left[ begin x=2pi k\ x=fracpi2+2pi k end right. end Решаем исключающее уравнение для знаменателя: $$ sin2xne 0Rightarrow 2xne pi kRightarrow xnefrac $$
Записываем полученную систему, отмечаем базовые решения на числовой окружности, исключаем нули знаменателя. Получаем: begin begin left[ begin x=fracpi4+pi k\ x=2pi k\ x=fracpi2+2pi kLeftrightarrow x=fracpi4+pi k end right.\ xnefrac end end За счет требования (xnefrac) исключаются семейства (x=fracpi2+2pi k) и (x=2pi k).
Остается только (x=fracpi4+pi k).
Ответ: (fracpi4+pi k)п.2. Приведение к квадратному уравнению
Шаг 1. С помощью базовых тригонометрических отношений и других преобразований представить уравнение в виде $$ af^2(x)+bf(x)+c=0 $$ где (f(x)) — тригонометрическая функция.
Шаг 2. Сделать замену переменных: (t=f(x)). Решить полученное квадратное уравнение: begin at^2+bt+c=0\ D=b^2-4ac, t_=frac<-bpmsqrt> end Шаг 3. Если (f(x)) — синус или косинус, проверить условие (-1leq t_leq 1). Отбросить лишние корни.
Шаг 4. Вернуться к исходной переменной и решить совокупность простейших тригонометрических уравнений ( left[ begin f(x)=t_1\ f(x)=t_2 end right. ) или одно оставшееся уравнение.
Шаг 5. Найти объединение полученных решений. Записать ответ.Например:
Решим уравнение (3sin^2x+10cosx-6=0)
Заменим (sin^2x=1-cos^2x). Получаем: begin 3(1-cos^2x)+10cosx-6=0\ -3cos^2x+10cosx-3=0\ 3cos^2x-10cosx+3=0\ text t=cosx, -1leq tleq 1\ 3t^2-10t+3=0\ D=(-10)^2-4cdot 3cdot 3=64\ t=frac= left[ begin frac13\ 3gt 1 — text end right. end Решаем (cosx=frac13Rightarrow x=pm arccosfrac13+2pi k)
Ответ: (pm arccosfrac13+2pi k)п.3. Приведению к однородному уравнению
Алгоритм решения однородного тригонометрического уравнения 1-й степени
Например:
Решим уравнение (sinx+cosx=0)
Делим на (cosx). Получаем: (tgx+1=0Rightarrow tgx=-1Rightarrow x=-fracpi4+pi k)
Ответ: (-fracpi4+pi k)Алгоритм решения однородного тригонометрического уравнения 2-й степени
Шаг 1. Разделить левую и правую части уравнения на (cos^2x) begin frac=frac\ Atg^2x+Btgx+C=0 end Шаг 2. Сделать замену переменных: (t=tgx). Решить полученное квадратное уравнение: begin at^2+bt+c=0\ D=b^2-4ac, t_=frac<-bpmsqrt> end Шаг 3. Решить совокупность простейших тригонометрических уравнений ( left[ begin tgx=t_1\ tgx=t_2 end right. )
Шаг 4. Найти объединение полученных решений. Записать ответ.Например:
Решим уравнение (6sin^2x-sinxcosx-cos^2x=3)
Приведем уравнение к однородному (чтобы избавиться от тройки справа, умножим её на тригонометрическую единицу): begin 6sin^2x-sinxcosx-cos^2x=3(sin^2x+cos^2x)\ 3sin^2x-sinxcosx-4cos^2x=0 |: cos^2x\ 3tg^2x-tgx-4=0\ text t=tgx\ 3t^2-t-4=0\ D=(-1)^2-4cdot 3cdot(-4)=49\ t=frac= left[ begin -1\ frac43 end right. end Решаем совокупность: ( left[ begin tgx=-1\ tgx=frac43 end right. Rightarrow left[ begin x=-fracpi4+pi k\ x=arctgfrac43+pi k end right. )
Ответ: (-fracpi4+pi k, arctgfrac43+pi k)Обобщим понятие однородного тригонометрического уравнения на любую натуральную степень:
Алгоритм решения однородного тригонометрического уравнения n-й степени
Шаг 1. Разделить левую и правую части уравнения на (cos^n x)
Шаг 2. Сделать замену переменных: (t=tgx). Решить полученное алгебраическое уравнение: begin a_0t^n+a_1t^+. +a_n=0 end Найти корни (t_1, t_2. t_k, kleq n)
Шаг 3. Решить совокупность простейших тригонометрических уравнений ( left[ begin tgx=t_1\ tgx=t_2\ . \ tgx=t_k end right. )
Шаг 4. Найти объединение полученных решений. Записать ответ.Например:
Решим уравнение (2sin^3x=cosx)
Умножим правую часть на тригонометрическую единицу и получим однородное уравнение 3-й степени: begin 2sin^3x=cosx(sin^2x+cos^2x)\ 2sin^3x-sin^2xcosx-cos^3x=0 |: cos^3x\ 2tg^x-tg^2x-1=0\ end Замена (t=tgx) дает кубическое уравнение: (2t^3-t^2-1=0)
Раскладываем на множители: begin 2t^3-t^2-1=t^3-t^2+t^3-1=t^2(t-1)+(t-1)(t^2+t+1)=\ =(t-1)(2t^2+t+1) end Вторая скобка на множители не раскладывается, т.к. (D=1-4cdot 2=-7 lt 0).
Получаем: (2t^3-t^2-1=0Leftrightarrow t-1=0)
Возвращаемся к исходной переменной:
(tgx=1Rightarrow x=fracpi4+pi k)
Ответ: (fracpi4+pi k)п.4. Введение вспомогательного угла
Например:
Решим уравнение (sqrtsin3x-cos3x=1)
Делим уравнение на ( p=sqrt=2: ) begin sqrtsin3x-cos3x=1 |: 2\ frac<sqrt>sin3x-frac12cos3x=frac12\ sinleft(fracpi3right)sin3x-cosleft(fracpi3right)cos3x=frac12\ cosleft(fracpi3right)cos3x-sinleft(fracpi3right)sin3x=-frac12\ cosleft(3x+fracpi3right)=-frac12Rightarrow 3x+fracpi3=pmfrac+2pi kRightarrow 3x= left[ begin -pi+2pi k\ fracpi3+2pi k end right. Rightarrow x= left[ begin -fracpi3+frac\ fracpi9+frac end right. end
Ответ: (-fracpi3+frac, fracpi9+frac)п.5. Преобразование суммы тригонометрических функций в произведение
При решении уравнений вида begin Asinax+Bsinbx+. +Ccoscx+Dcosdx+. =0 end используются формулы, выведенные в §17 данного справочника.
Затем проводится разложение на множители, и находится решение (см. начало этого параграфа).Например:
Решим уравнение (cos3x+sin2x-sin4x=0)
Заметим, что: $$ sin2x-sin4x=2sinfraccosfrac=2sin(-x)cos3x=-2sinxcos3x $$ Подставляем: begin cos3x-2sinxcos3x=0\ cos3x(1-2sinx)=0\ left[ begin cos3x=0\ 1-2sinx=0 end right. Rightarrow left[ begin 3x=fracpi2+pi k\ sinx=frac12 end right. Rightarrow left[ begin x=fracpi6+frac\ x=(-1)^kfracpi6+pi k= left[ begin x=fracpi6+2pi k\ frac+2pi k end right. end right. end Чтобы было понятней, распишем полученные множества в градусах: begin left[ begin x=fracpi6+frac=30^+60^k\ x=fracpi6+2pi k=30^+360^kLeftrightarrow x=30^+60^k=fracpi6+frac\ x=frac+2pi k=150^+360^k end right. end
Получаем, что семейства решений (fracpi6+2pi k) и (frac+2pi k) уже содержатся во множестве (fracpi6+frac). п.6. Преобразование произведения тригонометрических функций в сумму
При решении уравнений вида begin sinaxcdot cosbx=sincxcdot cosdx, sinaxcdot sinbx=sincxcdot cosdx text end используются формулы, выведенные в §18 данного справочника.
Например:
Решим уравнение (sin5xcos3x=sin6xcos2x)
Заметим, что: begin sin5xcos3x=frac=frac\ sin6xcos2x=frac=frac end Подставляем: begin frac=frac |times 2\ sin8x-sin2x=sin8x-sin4x\ sin4x-sin2x=0\ 2sin2xcos2x-sin2x=0\ sin2x(2cos2x-1)=0\ left[ begin sin2x=0\ 2cos2x-1=0 end right. Rightarrow left[ begin 2x=pi k\ cos2x=frac12 end right. Rightarrow left[ begin x=frac\ 2x=pmfracpi3+2pi k end right. Rightarrow left[ begin x=frac\ x=pmfracpi6+pi k end right. end
Семейства решений не пересекаются. Примечание: учитывая ответ предыдущего примера, это же множество решений можно записать в виде: ( left[ begin x=frac\ x=pmfracpi6+pi k end right. Leftrightarrow left[ begin x=fracpi6+frac\ x=pi k end right. )
п.7. Понижение степени
При решении уравнений вида begin sin^2ax+sin^2bx+. +cos^2cx+cos^2dx+. =A end используются формулы понижения степени: begin sin^2x=frac, cos^2x=frac end (см. формулы половинного аргумента, §15 данного справочника).
Например:
Решим уравнение (sin^2x+sin^22x=1)
Расписываем квадраты синусов через формулу понижения степени: begin frac+frac=1\ cos2x+cos4x=0\ 2cosfraccosfrac=0\ cos3xcosx=0\ left[ begin cos3x=0\ cosx=0 end right. Rightarrow left[ begin 3x=fracpi2+pi k\ x=fracpi2+pi k end right. Rightarrow left[ begin x=fracpi6+frac\ x=fracpi2+pi k end right. end
(x=fracpi2+pi k) является подмножеством (x=fracpi6+frac)
Поэтому begin left[ begin x=fracpi6+frac\ x=fracpi2+pi k end right. Leftrightarrow x=fracpi6+frac endп.8. Замена переменных
При решении уравнений вида (f(sinxpm cosx, sinxcosx)=0) используется замена begin t=cosxpm sinx end
Например:
Решим уравнение (sinx+cosx=1+sinxcosx)
Замена: (t=sinx+cosx)
Тогда (t^2=sin^2x+2sinxcosx+cos^2x=1+2sinxcosxRightarrow sinxcosx=frac)
Подставляем: begin t=1+fracRightarrow 2(t-1)=t^2-1Rightarrow t^2-2t+1=0Rightarrow (t-1)^2=0Rightarrow t=1\ sinx+cosx=1 | times frac<sqrt>\ frac<sqrt>sinx+frac<sqrt>cosx=frac<sqrt>\ sinfracpi4 sinx+cosfracpi4 cosx=frac<sqrt>\ cosleft(x-fracpi4right)=frac<sqrt>Rightarrow x-fracpi4=pmfracpi4 + 2pi kRightarrow Rightarrow left[ begin x=2pi k\ x=fracpi2+2pi k end right. end Ответ: (2pi k, fracpi2+2pi k)п.9. Использование ограничений области значений функций
Уравнения вида begin underbrace_<m text> end может иметь решение только, если каждое из слагаемых равно 1.
Поэтому решаем систему: ( begin sinax=1\ sinbx=1\ . \ cosdx=1\ . end )
Находим пересечение (!) полученных семейств решений и записываем ответ.Аналогично, уравнение вида begin underbrace_<m text> end может иметь решение только, если каждое из слагаемых равно -1.
Например:
Решим уравнение (sinx+cos4x=2)
Для этого нужно решить систему: begin begin sinx=1\ cos4x=1 end Rightarrow begin x=fracpi2+2pi k\ 4x=2pi k end Rightarrow begin x=fracpi2+2pi k\ x=frac end end
Пересечением двух семейств решений будет только (fracpi2+2pi k).
Поэтому begin begin x=fracpi2+2pi k\ x=frac end Leftrightarrow x=fracpi2+2pi k endп.10. Примеры
Пример 1. Используя различные методы, решите уравнения:
a) (4sinleft(fracpi2right)+5sin^2x=4)
Приводим уравнение к квадратному:
(5sin^x+4cosx-4=0)
(5(1-cos^2x)+4cosx-4=0)
(-5cos^2x+4cosx+1=0)
(5cos^2x-4cosx-1=0)
Замена: (t=cosx, -1leq tleq 1) begin 5t^2-4t-1=0Rightarrow (5t+1)(t-1)=0Rightarrow left[ begin t_1=-frac15\ t_2=1 end right. end Оба корня подходят. Возвращаемся к исходной переменной: begin left[ begin cosx=-frac15\ cosx=1 end right. Rightarrow left[ begin x=pm arccosleft(-frac15right)+2pi k\ x=2pi k end right. end Ответ: (pm arccosleft(-frac15right)+2pi k, 2pi k)б) (6sinxcosx=5cos2x)
(6sinxcosx=3cdot 2sinxcosx=3sin2x)
Приводим уравнение к однородному 1-й степени:
(3sin2x=5cos2x | : cos2x)
(3tg2x=5Rightarrow tg2x=frac53Rightarrow 2x=arctgfrac53+pi kRightarrow x=frac12 arctgfrac53+frac)
Ответ: (frac12 arctgfrac53+frac)в) (9cos^2x-5sin2x=-sin^2x)
(5sin2x=5cdot 2sinxcosx=10sinxcosx)
Приводим уравнение к однородному 2-й степени:
(sin^2x-10sinxcosx+9cos^2x=0 |: cos^2x)
(tg^2x-10tgx+9=0)
Замена: (t=tgx) begin t^2-10+9=0Rightarrow (t-1)(t-9)=0Rightarrow left[ begin t_1=1\ t_2=9 end right. end Оба корня подходят. Возвращаемся к исходной переменной: begin left[ begin tgx=1\ tgx=9 end right. Rightarrow left[ begin x=fracpi4+pi k\ x=arctg9+pi k end right. end Ответ: (fracpi4+pi k, arctg9+pi k)г) (cos3x-1=cos6x)
Косинус двойного угла: (cos6x=2cos^2 3x-1)
Подставляем и раскладываем на множители:
(cos3x-1=2cos^2 3x-1)
(cos3x-2cos^2 3x=0)
(cos3x(1-2cos3x)=0) begin left[ begin cos3x=0\ 1-2cos3x=0 end right. Rightarrow left[ begin 3x=fracpi2+pi k\ cos3x=frac12 end right. Rightarrow left[ begin x=fracpi6+frac\ 3x=pmfracpi3+2pi k end right. Rightarrow left[ begin x=fracpi6+frac\ x=pmfracpi9+frac end right. end Чтобы проверить пересечения, распишем семейства решений через градусы: begin left[ begin x=fracpi6+frac=30^+60^k=<. -90^,-30^,30^,90^,150^. >\ x=pmfracpi9+frac= left[ begin -20^+120^k=<. -140^,-20^,100^. >\ 20^+120^k=<. -100^,20^,140^. > end right. end right. end Семейства не пересекаются.
Ответ: (fracpi6+frac, pmfracpi9+frac)д) (sqrtsin2x-cos2x=-sqrt)
Разделим на (p=sqrt) и введем дополнительный угол:
(frac<sqrt>sin2x-frac12 cos2x=-frac<sqrt>)
(frac12cos2x-frac<sqrt>sin2x=frac<sqrt>)
(cosleft(2x-fracpi3right)=frac<sqrt>)
(2x-fracpi3=pmfracpi6+2pi k)
(2x=fracpi3pmfracpi6+2pi k= left[ begin -frac+2pi k\ fracpi2+2pi k end right. )
( left[ begin x=-frac+pi k\ x=fracpi4+pi k end right. ) Семейства решений не пересекаются.
Ответ: (-frac+pi k, fracpi4+pi k)е) (cos^2x+cos^2 2x=cos^2 3x+cos^2 4x)
Формула понижения степени: (cos^2x=frac)
Подставляем: begin frac+frac=frac+frac\ cos2x+cos4x=cos6x+cos8x\ 2cosfraccosfrac=2cosfraccosfrac |: 2\ cos3xcosx=cos7xcosx=0\ cos3xcosx-cos7xcosx=0\ cosx(cos3x-cos7x)=0\ cosxleft(-2sinfracsinfracright)=0\ -2cosxsin5xsin(-2x)=0\ 2cosxsin5xsin2x=0\ cosxsin5xsin2x=0\ left[ begin cosx=0\ sin5x=0\ sin2x=0 end right. Rightarrow left[ begin x=fracpi2+pi k\ 5x=pi k\ 2x=pi k end right. Rightarrow left[ begin x=fracpi2+pi k\ x=frac\ x=frac end right. end Семейство решений (x=fracpi2+pi k) (базовые точки 90°, 270° на числовой окружности) является подмножеством для (x=frac) (базовые точки 0°, 90°, 180°, 270°). Поэтому: begin left[ begin x=fracpi2+pi k\ x=frac\ x=frac end right. Rightarrow left[ begin x=frac\ x=frac end right. end Ответ: (frac, frac)Пример 2*. Решите уравнения:
a) begin frac-frac+frac=0 end ОДЗ: (tgxne pm 3)
1) Если (cosxne 0), то последнее слагаемое (frac=frac<frac><frac>=frac)
Получаем: begin frac-frac+frac=0\ frac=0\ frac=0\ end Замена: (t=tgx) begin fracRightarrow begin t^2+7t-30=0\ tnepm3 end Rightarrow begin (t+10)(t-3)=0\ tnepm3 end Rightarrow begin left[ begin t=-10\ t=3 end right.\ tnepm3 end Rightarrow\ t=-10 end Получаем: begin tgx=-10\ x=arctg(-10)+pi k=-arctg10+pi k end
2) Проверим, является ли (cosx=0) решением.
При (cosx=0, x=fracpi2+pi k, tgxrightarrowinfty). Первое слагаемое (fracrightarrowfracrightarrow 0)
Второе слагаемое (fracrightarrowfracrightarrow 0)
Третье слагаемое (fracrightarrowfrac=1ne 0)
Сумма слагаемых в пределе (tgxrightarrowinfty) равна (0+0+1=1ne 0)
(cosx=0) решением не является.
Ответ: (-arctg10+pi k)б) (frac+1=7frac)
ОДЗ: (cosxne 0, xnefracpi2+pi k) begin |cosx|= begin cosx, -fracpi2+2pi kleq xlt fracpi2+2pi k\ -cosx, fracpi2+2pi kleq xlt frac+2pi k end end 1) Решаем для положительного косинуса (1-я и 4-я четверти) begin frac+1=7frac\ 3(1+tg^2x)+1-7tgx=0\ 3tg^2-7tgx+4=0\ (3tgx-4)(tgx-1)=0\ left[ begin tgx=frac43\ tgx=1 end right. Rightarrow left[ begin x=arctgfrac43+pi k\ x=fracpi4+pi k end right. end
Полученное решение даёт 4 базовых точки на числовой окружности: (fracpi4, arctgfrac43, frac) и (pi+arctgfrac43), которые находятся в 1-й и 3-й четвертях.
Выбираем только точки в 1-й четверти:
(fracpi4) и (arctgfrac43).
Это означает, что в записи решения период будет не (pi k), а (2pi k). begin left[ begin x=arctgfrac43+2pi k\ x=fracpi4+2pi k end right. end2) Решаем для отрицательного косинуса (2-я и 3-я четверти) begin frac+1=-7frac\ 3(1+tg^2x)+1+7tgx=0\ 3tg^2x+7tgx+4=0\ (3tgx+4)(tgx+1)=0\ left[ begin tgx=-frac43\ tgx=-1 end right. Rightarrow left[ begin x=-arctgfrac43+pi k\ x=-fracpi4+pi k end right. end
Полученное решение даёт 4 базовых точки на числовой окружности: (-fracpi4, -arctgfrac43, frac) и (pi-arctgfrac43), которые находятся в 2-й и 4-й четвертях.
Выбираем только точки вo 2-й четверти:
(frac) и (pi-arctgfrac43).
Это означает, что в записи решения будут выбранные точки с периодом (2pi k). begin left[ begin x=pi-arctgfrac43+2pi k\ x=frac+2pi k end right. end3) Объединяем полученные решения: begin left[ begin x=arctgfrac43+2pi k\ x=fracpi4+2pi k\ x=pi-arctgfrac43+2pi k\ x=frac+2pi k end right. end
По аналогии с записью арксинуса можно объединить симметричные относительно оси синусов точки: begin left[ begin x=arctgfrac43+2pi k\ x=pi-arctgfrac43+2pi k end right. Leftrightarrow x=(-1)^k arctgfrac43+pi k\ left[ begin x=fracpi4+2pi k\ x=frac+2pi k end right. Leftrightarrow x=(-1)^k fracpi4+pi k\ end Окончательно получаем: ( left[ begin x=(-1)^k arctgfrac43+pi k\ x=(-1)^k fracpi4+pi k end right. ).
Ответ: ((-1)^k arctgfrac43+pi k, (-1)^k fracpi4+pi k)г) (3sinx-4cosx=5)
Способ 1. Вводим дополнительный угол:
(p=sqrt=5)
(frac35sinx-frac45 cosx=1)
(sinalpha=frac35, cosalpha=frac45)
(sinalpha sinx-cosalpha cosx=1)
(cosalpha cosx-sinalpha sinx=-1)
(cos(x+alpha)=-1)
(x+alpha=pi+2pi k)
(x=-alpha+pi+2pi k=-arcsinfrac35+pi+2pi k)Способ 2. Делаем универсальную подстановку: begin sinalpha=frac<2tgfrac>, cosalpha=frac\ 3cdot frac<2tgfrac><1+tg^2frac>-4cdotfrac<1-tg^2frac><1+tg^2frac>=5\ frac<6tgfrac-4left(1-tg^2fracright)-5left(1+tg^2fracright)><1+tg^2frac>=0 end (1=tg^2fracgeq 1), знаменатель никогда не превращается в 0, отбрасываем его и работаем с числителем: begin -tg^2frac+6tgfrac-9=0Rightarrow tg^2frac-6tgfrac+9=0Rightarrowleft(tgfrac-3right)^2=0Rightarrow tgfrac=3\ frac=arctg3+pi kRightarrow x= 2arctg3+2pi k end
Докажем, что полученные ответы: $$ x=-arcsinfrac35+pi+2pi k text x=2arctg3+2pi k $$ равнозначны, т.е. (-arcsinfrac35+pi=2arctg3), и равны углы: $$ arcsinfrac35=pi-2arctg3 (*) $$ Пусть в правой части равенства (*) (2arctg3=varphi). Тогда (arctg3=fracvarphi2) и (tgfracvarphi2=3).
А в левой части равенства (*) (arcsinfrac35=alpha) и (sinalpha=frac35)
Угол (0lt arcsinfrac35lt fracpi2) расположен в 1-й четверти.
Угол (varphi=2arctg3) расположен во 2-й четверти ((cosvarphilt 0, sinvarphigt 0)). $$ cosvarphi=frac=frac=-frac45, sinvarphi=frac=frac=frac35 $$ Получаем, что для угла (alpha: sinalpha=frac35, cosalpha=frac45)
Для угла (varphi: sinvarphi=frac35, cosvarphi=-frac45)
Откуда следует, что (alpha=pi-varphi). Что и требовалось доказать.
Ответ: (-arcsinfrac35+pi+2pi k) или (2arctg3+2pi k) (т.к. (-arcsinfrac35+pi=2arctg3))Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Объединение решений в тригонометрических уравнениях
Чтобы решить тригонометрическое уравнение надо путём тригонометрических преобразований свести его к простейшему тригонометрическому уравнению. Напомним формулы решений простейших тригонометрических уравнений.
1. `sinx=a`. Если `|a|>1`, решений нет. Если `|a| 1`, решений нет. Если `|a| Уравнение распадается на два:
1) `2sinx-1=0`, `sinx=1/2` и `x=(-1)^npi/6+pin,n in Z`.
2) `3cosx+1=0`, `cosx=-1/3` и `x=+- arccos(-1/3)+2pin,n in Z`.
Отметим, что в сериях решений 1) и 2) не было бы ошибкой использовать разные буквы (например, `n` и `m`), т. к. идёт перечисление решений.
Используя формулу приведения `sin2x=cos(pi/2-2x)`, преобразуем наше уравнение `cos(pi/2-2x)+cos(5x-pi/6)=0` или `2cos((3x+pi/3)/2)*cos((7x-(2pi)/3)/2)=0`.
Уравнение распадётся на два:
1) `cos((3x+pi/3)/2)=0`; `(3x+pi/3)/2=pi/2+pin,ninZ`;
II. Сведение уравнения к алгебраическому от одного переменного
Решить уравнение `4sin^3x=3cos(x+(3pi)/2)`.
По формуле приведения `cos(x+(3pi)/2)=sinx`,
поэтому уравнение запишется: `4sin^3x=3sinx`.
Отметим, что в случае двух уравнений `sinx=+-(sqrt3)/2` мы записали не объединение стандартных формул `(-1)^n(+-pi/3)+pin,ninZ`, а более простую, которая получается, если изобразить решения этих уравнений на тригонометрическом круге (рис. 1). (Две верхние точки – решения уравнения `sinx=(sqrt3)/2`, а две нижние – решения уравнения `sinx=-(sqrt3)/2`).
`x=pin,ninz`; `x=+-pi/3+pin,n inZ`.
Решить уравнение `cos2x+sin^2x=0,5`.
Воспользуемся формулой `cos2x=1-2sin^2x`.
Получим: `1-sin^2x=0,5` или `sin^2x=1/2`, `sinx=+-1/sqrt2`.
Это уравнение можно решить и пользуясь формулой `sin^2x+(1-cos2x)/2`. Тогда оно преобразуется к виду: `cos2x=0`, `2x=pi/2+pin,ninZ`, или
Геометрически множества точек (1) и (2) совпадают (рис. 2). Так что решения тригонометрических уравнений могут быть записаны в разной форме.
III. Однородные уравнения
(хотя формально эти уравнения можно отнестик предыдущему типу)
Решить уравнение `5sin^2x-4sinx*cosx-cos^2x=0`.
Это однородное уравнение второго порядка. Так как `cosx!=0` (иначе из нашего уравнения следовало бы, что `sinx=0` что противоречит основному тригонометрическому тождеству `sin^2x+cos^2x=1`), то разделим наше уравнение на `cos^2x`. Получим уравнение `5″tg»^2x-4″tg»x-1=0`. Откуда `»tg»x=1` или `»tg»x=-1/5`. Следовательно, `x=pi/4+pin,ninZ`, или `x=-«arctg»1/5+pin,ninZ`.
Решить уравнение `2+3sinxcosx=7sin^2x`.
Воспользуемся основным тригонометрическим тождеством `1=sin^2x+cos^2x`. Преобразуем наше уравнение к однородному уравнению второго порядка: `2(sin^2x+cos^2x)+3sinxcosx=7sin^2x` или `5sin^2x-3sinxcosx-2cos^2x=0`. Здесь `cosx!=0` (в противном случае из последнего уравнения следовало бы, что `sinx!=0` что противоречит основному тригонометрическому тождеству). Делим последнее уравнение на `cos^2x`. Получаем уравнение `5″tg»^2x-3″tg»x-2=0`.
Откуда `»tg»x=1` или `»tg»x=-2/5`. И значит, `x=pi/4+pin,ninZ`, или `x=-«arctg»2/5+pin,ninZ`
Наконец рассмотрим уравнение, сводящееся к однородному третьего порядка.
Решить уравнение `sin^3x+13cos^3x-cosx=0`.
Перепишем это уравнение так:
Это однородное уравнение третьего порядка. Деля его на `cos^3x` (`cosx!=0` для решений нашего уравнения), получим уравнение относительно `»tg»x`
Делаем замену: `t=»tg»x`. Алгебраическое уравнение `t^3-t^2+12=0` имеет корень `t=-2` (находится подбором среди целых делителей числа `12`). Далее деля многочлен `t^3-t^2+12` на `(t+12)`, раскладываем левую часть алгебраического уравнения на множители
Уравнение `t^2-3t+6=0` не имеет действительных корней, т. к. `D sqrt2` не даёт решений. Число `|1-sqrt3| при `2x+varphi=pi/2+2pin,ninZ`.
`max_Rf(x)=-2`, `min_R f(x)=-12`.
Рассмотрим теперь более сложные тригонометрические уравнения, в которых надо делать отбор корней.
V. Рациональные тригонометрические уравнения
Решить уравнение `(cos2x+cosx+1)/(2sinx+sqrt3)=0`.
Не будем решать это неравенство, а изобразим на тригонометрическом круге (рис. 3а) точки, не удовлетворяющие ОДЗ.
Решаем уравнение `cos2x+cosx+1=0`.
Преобразуем его: `(2cos^2x-1)+cosx+1=0`, `2cos^2x+cosx=0`,
Изобразим решения уравнения `cosx=0` на тригонометрическом круге (рис. 3б). Они удовлетворяют ОДЗ.
Изобразим решения уравнения `cosx=-1/2` на тригонометрическом круге (рис. 3в). Мы видим, что точки `x=-(2pi)/3+2pin,ninZ`, не удовлетворяют ОДЗ, а точки `x=(2pi)/3+2pin,ninZ`, удовлетворяют ОДЗ. Таким образом,
Решить уравнение `(sinx)/(sin3x)+(sin5x)/(sinx)=8cosxcos3x`.
Умножим уравнение на `sinx*sin3x`. Получим:
Преобразуем это уравнение:
Ещё раз воспользуемся формулой
в правой части последнего уравнения и умножим его на `2`. Получим
`(1-cos2x)+(cos2x-cos8x)=2(cos4x-cos8x)` или `1+cos8x-2cos4x=0`.
Далее: `1+(2cos^2 4x-1)-2cos4x=0`, `2cos4x(cos4x-1)=0 iff` $$ iff left[beginmathrm4x=1.\ mathrm4x=0.endright.$$
Если `cos4x=1`, то `4x=2pin,x=(pin)/2,ninZ`.
1. Изображаем точки
на тригонометрическом круге (рис. 4а). Геометрически их `4` штуки (для `n=0,1,2,3` – далее они повторяются).
2. Изображаем точки
которые не удовлетворяют ОДЗ на тригонометрическом круге (4б). Их `6` штук (для `m=0,1,2,3,4,5` – далее они повторяются).
Видно, что совпадения точек в `(3)` и `(4)` будут при `x=pin,ninZ`. Эти значения надо исключить из решения, т. е. в ответ пойдут точки
С решениями уравнения
или `x=pi/8+(pin)/4,ninZ`, можно поступить аналогично, сделав отбор на тригонометрическом круге. Но когда точек–решений на тригонометрическом круге много, и много точек, не входящих в ОДЗ, то удобнее воспользоваться аналитическим способом отбора решений. В данном случае точек — решений на тригонометрическом круге в серии `x=pi/8+(pin)/4,ninZ`, будет `8` штук (различные при `n=0, 1, 2, 3, 4, 5, 6, 7` – далее они повторяются), а точек, не входящих в ОДЗ на тригонометрическом круге `6`. Посмотрим, есть ли совпадения, т. е. существуют ли целые `m` и `n` такие, что
`pi/8+(pin)/4=(pim)/3 iff 1/8+n/4=m/3 iff`
`iff 3+6n=8m iff 3=2(4m-3n)`.
Последнее равенство невозможно, т. к. слева стоит нечётное число, а справа чётное.
Отметим, что и для решений уравнения `cos4x=1` отбор можно было сделать аналитически. А именно смотрим, существуют ли целые `m` и `n` такие, что `(pin)/2=(pim)/3 iff 3n=2m`. Видим, что `n` делится на `2`. Тогда `n=2k` и `m=3k,kinZ`. Т. е. из решения уравнения `cos4x=1` надо исключить `x=(pin)/2`, где `n=2k`, т. е. оставить `x=(pin)/2` с `n=2k+1,kinZ`. Но при `n=2k+1` в серии `x=(pin)/2` останутся `x=pi/2(2k+1)=pi/2+pik,kinZ`, что и было нами получено на тригонометрическом круге.
Иногда отбор решений предлагается сделать в условии задачи.
📺 Видео
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Симметрия корней и оптимизация ответов в тригонометрии: часть 1Скачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать
Отбор корней по окружностиСкачать
Как решать тригонометрические неравенства?Скачать
Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать
Учимся объединять корни тригонометрического уравнения. Задание 12 ЕГЭ профильСкачать
Решение тригонометрических уравнений. 10 класс.Скачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
Решение тригонометрических уравнений и их систем. 10 класс.Скачать
Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Тригонометрические уравнения | Борис ТрушинСкачать
Решение тригонометрических уравнение в ЕГЭ для новичков | ЕГЭ Математика | Аня Матеманя | ТопскулСкачать
Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.Скачать
10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать