О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
- Основные понятия
- Решение неполных квадратных уравнений
- Как решить уравнение ax² = 0
- Как решить уравнение ax² + с = 0
- В двух словах
- Как решить уравнение ax² + bx = 0
- Неполные квадратные уравнения
- Решение неполных квадратных уравнений
- 156 неполных квадратных уравнений тренажёр по алгебре (8 класс)
- Скачать:
- Предварительный просмотр:
- По теме: методические разработки, презентации и конспекты
- 💥 Видео
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Основные понятия
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.
Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:
- если D 0, есть два различных корня.
Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.
Неполные квадратные уравнения бывают трех видов:
Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения. Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать Решение неполных квадратных уравненийКак мы уже знаем, есть три формулы неполных квадратных уравнений:
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль). Видео:МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать Как решить уравнение ax² = 0Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0. Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней. Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.
Пример 1. Решить −5x² = 0.
Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса! Видео:Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать Как решить уравнение ax² + с = 0Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный. Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами. Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи. Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней. В двух словахНеполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:
Пример 1. Найти решение уравнения 9x² + 4 = 0.
Разделим обе части на 9: Ответ: уравнение 9x² + 4 = 0 не имеет корней. Пример 2. Решить -x² + 9 = 0.
Разделим обе части на -1: Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3. Видео:НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 классСкачать Как решить уравнение ax² + bx = 0Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0. Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника. Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x. Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a. Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня: Пример 1. Решить уравнение 2x² — 32x = 0
Ответ: х = 0 и х = 16. Пример 2. Решить уравнение 3x² — 12x = 0 Разложить левую часть уравнения на множители и найти корни: Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать Неполные квадратные уравненияНеполное квадратное уравнение – это уравнение вида в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:
Видео:Дробно-рациональные уравнения. 8 класс.Скачать Решение неполных квадратных уравненийЧтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки: Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит: Чтобы ax + b было равно нулю, нужно, чтобы
Следовательно, уравнение ax 2 + bx = 0 имеет два корня:
Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю. Пример 1. Решите уравнение:
Пример 2. Решите уравнение:
Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:
В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа. Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем: В этом случае уравнение будет иметь два противоположных корня: Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами. Пример 1. Решите уравнение:
Пример 2. Решите уравнение:
Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения. Видео:АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | ВидеоурокСкачать 156 неполных квадратных уравнений |
Вложение | Размер |
---|---|
156_nepolnyh_kvadratnyh_uravneniy.docx | 28.31 КБ |
Видео:ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэСкачать
Предварительный просмотр:
- 0,5x 2 = 0
- x 2 – 9 = 0
- 2x 2 + 15 = 0
- 3x 2 + 2x = 0
- 2x 2 – 16 = 0
- 5(x 2 + 2) = 2(x 2 + 5)
- (x + 1) 2 – 4 = 0
- -1,5x 2 = 0
- x 2 – 4 = 0
- 2x 2 + 7 = 0
- x 2 + 9x = 0
- 81x 2 – 64 = 0
- 2(x 2 + 4) = 4(x 2 + 2)
- (x – 2) 2 – 8 = 0.
- 9x 2 – 1 = 0
- 3x – 2x 2 = 0
- x 2 = 3x
- x 2 + 2x – 3 = 2x + 6
- 3x 2 + 7 = 12x+ 7
- 3x 2 – 48 = 0
- 3x 2 – 12 = 0
- 2x 2 + 6x = 0
- 1,8x 2 = 0
- x 2 + 9 = 0
- 7x 2 – 14 = 0
- x 2 – 3x =0
- х 2 – 81=0
- 4x 2 + 36 = 0
- 25y 2 – 1 = 0
- -y 2 + 2 = 0
- 9 – 16y 2 = 0
- 7y 2 + y = 0
- 6y – y 2 = 0
- 0,1y 2 – 0,5y = 0
- (x + 1)(x -2) = 0
- x(x + 0,5) = 0
- x 2 – 2x = 0
- x 2 – 16 = 0
- 2x 2 – 18 = 0
- 3x 2 – 12x = 0
- 2,7x 2 = 0
- x 2 + 16 = 0
- 6x 2 – 18 = 0
- x 2 – 5x = 0
- 4y – y 2 = 0
- 0,2y 2 – y = 0
- (x + 2)(x – 1) = 0
- (x — 0,3)x = 0
- x 2 + 4x = 0
- x 2 – 36 = 0
- 16x 2 – 1 = 0
- 4x – 5x 2 = 0
- x 2 = 7x
- x 2 – 3x – 5 = 11 – 3x
- 5x 2 – 6 = 15x – 6
- х 2 – 25 = 0
- 3x 2 – 12 = 0
- 2x 2 + 6x = 0
- 1,8x 2 = 0
- x 2 + 9 = 0
- 7x 2 – 14 = 0
- x 2 – 3x =0
- х 2 – 81=0
- 4x 2 + 36 = 0
- 25y 2 – 1 = 0
- -y 2 + 2 = 0
- 9 – 16y 2 = 0
- 7y 2 + y = 0
- 6y – y 2 = 0
- 0,1y 2 – 0,5y = 0
- (x + 1)(x -2) = 0
- x(x + 0,5) = 0
- x 2 – 2x = 0
- x 2 – 16 = 0
- 2x 2 – 18 = 0
- 3x 2 – 12x = 0
- 2,7x 2 = 0
- x 2 + 16 = 0
- 6x 2 – 18 = 0
- x 2 – 5x = 0
- 4y – y 2 = 0
- 0,2y 2 – y = 0
- (x + 2)(x – 1) = 0
- (x — 0,3)x = 0
- x 2 + 4x = 0
- x 2 – 36 = 0
- 16x 2 – 1 = 0
- 4x – 5x 2 = 0
- x 2 = 7x
- x 2 – 3x – 5 = 11 – 3x
- 5x 2 – 6 = 15x – 6
- х 2 – 25 = 0
- x 2 — 4 = 0
- 9x 2 = 0
- 5x 2 = 0
- -14x 2 — 56 = 0
- x 2 — 33 = 0
- 14x 2 = -140x
- -x 2 — 8x = 0
- 2х 2 -4х=х(4х-3)
- -8x 2 — 40x = 0
- x 2 + x = 0
- — x 2 = — 67x
- — 4x 2 — 100 = 0
- 2x 2 = 0
- 29x 2 = 0
- 2x 2 — 242 = 0
- 2х 2 -4х=х(6х-3)
- x 2 — 4 = 0
- 9x 2 = 0
- 5x 2 = 0
- -14x 2 — 56 = 0
- x 2 — 33 = 0
- 14x 2 = — 140x
- -x 2 — 8x = 0
- 2х 2 -4х=х(4х-3)
- -8x 2 — 40x = 0
- x 2 + x = 0
- -x 2 = -67x
- -4x 2 — 100 = 0
- 2x 2 = 0
- 29x 2 = 0
- 2x 2 — 242 = 0
- 2х 2 -4х=х(6х-3)
- 3x 2 -12=0
- 2х 2 +6х=0
- 1,8х 2 =0
- х 2 +25=0
- х 2 — =0
- х 2 =3х
- х 2 +2х-3=2х+6
- х 2 =3,6
- 3x 2 -1=0
- 2х 2 -6х=0
- 8х 2 =0
- х 2 +81=0
- х 2 — =0
- х 2 =5х
- х 2 +х-3=х+6
- х 2 =8,1
- 2х 2 -18=0
- 3х 2 -12х=0
- 2,7х 2 =0
- х 2 +16=0
- х 2 — =0
- х 2 =7х
- х 2 -3х-5=11-3х
- х 2 =2,5
- 2х 2 -32=0
- 3х 2 -15х=0
- 2,4х 2 =0
- х 2 +49=0
- х 2 — =0
- х 2 =х
- х 2 -7х-5=11-7х
- х 2 =4,9
Видео:Квадратное уравнение. 8 класс.Скачать
По теме: методические разработки, презентации и конспекты
Определение квадратного уравнения. Неполные квадратные уравнения. План-конспект урока в 8 классе с использованием ЭОР
Представлен план-конспект урока изучения нового материала с использованием ЭОР в технологии деятельностного метода. Первый урок в теме. Используются индивидуальная и фронтальные формы организации урок.
ПЛАН-КОНСПЕКТ УРОКА Квадратные уравнения. Неполное квадратное уравнение.
Предложенный урок по теме с использованием ЭОР.
Определение квадратного уравнения. Неполные квадратные уравнения.
план-конспект урока с использованием ЭОР.
АЛГЕБРА 8 класс Урок — практикум по теме «Квадратные уравнения. Неполные квадратные уравнения».
Цели урока:Закрепление навыка решения неполных квадратных уравнений.Развитие логического мышления, речи, навыков самоконтроля и самооценки.3. Воспитание навыков самостоятельной работы и умений р.
Конспект урока «Определение квадратного уравнения. Неполные квадратные уравнения.»
Конспект урока «Определение квадратного уравнения. Неполные квадратные уравнения.».
План конспект урока математики(алгебра)в 8 классе по теме:»Определение квадратного уравнения.Неполное квадратное уравнение»
Урок изучения нового материала.Предметы точных дисциплин(раздел – алгебра ,8 класс)Богомолова Татьяна ЕфимовнаУчитель математикиМБОУ «Верхнекармальская ООШ» Черемшанского муниципального районаРеспубли.
Квадратное уравнение. Неполные квадратные уравнения
Материал может быть использован на первом уроке по теме «Неполные квадратные уравнения» в классах , работающих по учебнику для 8 класса общеобразовательных учреждений. Авторы: Ю.Н.Макарычев, Н.Г.Миндю.
💥 Видео
Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать
Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНДСкачать
МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?Скачать
Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать
Как решать квадратные уравнения без дискриминантаСкачать
РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19 алгебра 8 классСкачать
Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Как решать неполное квадратное уравнение? 😎Скачать