Неполные квадратные уравнения с дробями 8 класс

Неполные квадратные уравнения

Неполные квадратные уравнения с дробями 8 класс

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

Неполные квадратные уравнения бывают трех видов:

  • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

  • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax² + c = 0, при b = 0;
  • ax² + bx = 0, при c = 0.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать

МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Неполные квадратные уравнения с дробями 8 класс

Пример 1. Решить −5x² = 0.

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

Видео:Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать

Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

  • перенесем c в правую часть: ax² = — c,
  • разделим обе части на a: x² = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

  • не имеет корней при — c/а 0.

Пример 1. Найти решение уравнения 9x² + 4 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 9:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 9x² + 4 = 0 не имеет корней.

    Пример 2. Решить -x² + 9 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на -1:

    Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

    Видео:НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 классСкачать

    НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 класс

    Как решить уравнение ax² + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

    Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 2x² — 32x = 0

      Вынести х за скобки

  • Это уравнение равносильно х = 0 и 2x — 32 = 0.
  • Решить линейное уравнение:

  • Значит корни исходного уравнения — 0 и 16.
  • Ответ: х = 0 и х = 16.

    Пример 2. Решить уравнение 3x² — 12x = 0

    Разложить левую часть уравнения на множители и найти корни:

    Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Неполные квадратные уравнения

    Неполное квадратное уравнение – это уравнение вида

    в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

    ax 2 + bx = 0,если c = 0;
    ax 2 + c = 0,если b = 0;
    ax 2 = 0,если b = 0 и c = 0.

    Видео:Дробно-рациональные уравнения. 8 класс.Скачать

    Дробно-рациональные уравнения. 8 класс.

    Решение неполных квадратных уравнений

    Чтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки:

    Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

    Чтобы ax + b было равно нулю, нужно, чтобы

    x = —b.
    a

    Следовательно, уравнение ax 2 + bx = 0 имеет два корня:

    x1 = 0 и x2 = —b.
    a

    Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

    Пример 1. Решите уравнение:

    a 2 — 12a = 0
    a(a — 12) = 0
    a1 = 0a — 12 = 0
    a2 = 12

    Пример 2. Решите уравнение:

    7x 2 = x
    7x 2 — x = 0
    x(7x — 1) = 0
    x1 = 07x — 1 = 0
    7x = 1
    x2 =1
    7

    Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:

    ax 2 = —c, следовательно, x 2 = —c.
    a

    В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

    Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем:

    В этом случае уравнение будет иметь два противоположных корня:

    Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

    Пример 1. Решите уравнение:

    24 = 2y 2
    24 — 2y 2 = 0
    -2y 2 = -24
    y 2 = 12
    y1 = +√ 12y2 = -√ 12

    Пример 2. Решите уравнение:

    b 2 — 16 = 0
    b 2 = 16
    b1 = 4b2 = -4

    Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения.

    Видео:АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | ВидеоурокСкачать

    АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | Видеоурок

    156 неполных квадратных уравнений
    тренажёр по алгебре (8 класс)

    156 неполных квадартных уравнений отлично подойдут для профильных уроков математики, помогут улучшить навыки учащихся.

    Видео:Неполные квадратные уравнения. Урок 15. Алгебра 8 классСкачать

    Неполные квадратные уравнения. Урок 15. Алгебра 8 класс

    Скачать:

    ВложениеРазмер
    156_nepolnyh_kvadratnyh_uravneniy.docx28.31 КБ

    Видео:ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэСкачать

    ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэ

    Предварительный просмотр:

    1. 0,5x 2 = 0
    2. x 2 – 9 = 0
    3. 2x 2 + 15 = 0
    4. 3x 2 + 2x = 0
    5. 2x 2 – 16 = 0
    6. 5(x 2 + 2) = 2(x 2 + 5)
    7. (x + 1) 2 – 4 = 0
    8. -1,5x 2 = 0
    9. x 2 – 4 = 0
    10. 2x 2 + 7 = 0
    11. x 2 + 9x = 0
    12. 81x 2 – 64 = 0
    13. 2(x 2 + 4) = 4(x 2 + 2)
    14. (x – 2) 2 – 8 = 0.
    15. 9x 2 – 1 = 0
    16. 3x – 2x 2 = 0
    17. x 2 = 3x
    18. x 2 + 2x – 3 = 2x + 6
    19. 3x 2 + 7 = 12x+ 7
    20. 3x 2 – 48 = 0
    21. 3x 2 – 12 = 0
    22. 2x 2 + 6x = 0
    23. 1,8x 2 = 0
    24. x 2 + 9 = 0
    25. 7x 2 – 14 = 0
    26. x 2 – 3x =0
    27. х 2 – 81=0
    28. 4x 2 + 36 = 0
    29. 25y 2 – 1 = 0
    30. -y 2 + 2 = 0
    31. 9 – 16y 2 = 0
    32. 7y 2 + y = 0
    33. 6y – y 2 = 0
    34. 0,1y 2 – 0,5y = 0
    35. (x + 1)(x -2) = 0
    36. x(x + 0,5) = 0
    37. x 2 – 2x = 0
    38. x 2 – 16 = 0
    39. 2x 2 – 18 = 0
    40. 3x 2 – 12x = 0
    41. 2,7x 2 = 0
    42. x 2 + 16 = 0
    43. 6x 2 – 18 = 0
    44. x 2 – 5x = 0
    45. 4y – y 2 = 0
    46. 0,2y 2 – y = 0
    47. (x + 2)(x – 1) = 0
    48. (x — 0,3)x = 0
    49. x 2 + 4x = 0
    50. x 2 – 36 = 0
    51. 16x 2 – 1 = 0
    52. 4x – 5x 2 = 0
    53. x 2 = 7x
    54. x 2 – 3x – 5 = 11 – 3x
    55. 5x 2 – 6 = 15x – 6
    56. х 2 – 25 = 0
    57. 3x 2 – 12 = 0
    58. 2x 2 + 6x = 0
    59. 1,8x 2 = 0
    60. x 2 + 9 = 0
    61. 7x 2 – 14 = 0
    62. x 2 – 3x =0
    63. х 2 – 81=0
    64. 4x 2 + 36 = 0
    65. 25y 2 – 1 = 0
    66. -y 2 + 2 = 0
    67. 9 – 16y 2 = 0
    68. 7y 2 + y = 0
    69. 6y – y 2 = 0
    70. 0,1y 2 – 0,5y = 0
    71. (x + 1)(x -2) = 0
    72. x(x + 0,5) = 0
    73. x 2 – 2x = 0
    74. x 2 – 16 = 0
    75. 2x 2 – 18 = 0
    76. 3x 2 – 12x = 0
    77. 2,7x 2 = 0
    78. x 2 + 16 = 0
    79. 6x 2 – 18 = 0
    80. x 2 – 5x = 0
    81. 4y – y 2 = 0
    82. 0,2y 2 – y = 0
    83. (x + 2)(x – 1) = 0
    84. (x — 0,3)x = 0
    85. x 2 + 4x = 0
    86. x 2 – 36 = 0
    87. 16x 2 – 1 = 0
    88. 4x – 5x 2 = 0
    89. x 2 = 7x
    90. x 2 – 3x – 5 = 11 – 3x
    91. 5x 2 – 6 = 15x – 6
    92. х 2 – 25 = 0
    93. x 2 — 4 = 0
    94. 9x 2 = 0
    95. 5x 2 = 0
    96. -14x 2 — 56 = 0
    97. x 2 — 33 = 0
    98. 14x 2 = -140x
    99. -x 2 — 8x = 0
    100. 2х 2 -4х=х(4х-3)
    101. -8x 2 — 40x = 0
    102. x 2 + Неполные квадратные уравнения с дробями 8 классx = 0
    103. — x 2 = — 67x
    104. — 4x 2 — 100 = 0
    105. 2x 2 = 0
    106. 29x 2 = 0
    107. 2x 2 — 242 = 0
    108. 2х 2 -4х=х(6х-3)
    109. x 2 — 4 = 0
    110. 9x 2 = 0
    111. 5x 2 = 0
    112. -14x 2 — 56 = 0
    113. x 2 — 33 = 0
    114. 14x 2 = — 140x
    115. -x 2 — 8x = 0
    116. 2х 2 -4х=х(4х-3)
    117. -8x 2 — 40x = 0
    118. x 2 + Неполные квадратные уравнения с дробями 8 классx = 0
    119. -x 2 = -67x
    120. -4x 2 — 100 = 0
    121. 2x 2 = 0
    122. 29x 2 = 0
    123. 2x 2 — 242 = 0
    124. 2х 2 -4х=х(6х-3)
    125. 3x 2 -12=0
    126. 2х 2 +6х=0
    127. 1,8х 2 =0
    128. х 2 +25=0
    129. Неполные квадратные уравнения с дробями 8 классх 2 — Неполные квадратные уравнения с дробями 8 класс=0
    130. х 2 =3х
    131. х 2 +2х-3=2х+6
    132. х 2 =3,6
    133. 3x 2 -1=0
    134. 2х 2 -6х=0
    135. 8х 2 =0
    136. х 2 +81=0
    137. Неполные квадратные уравнения с дробями 8 классх 2 — Неполные квадратные уравнения с дробями 8 класс=0
    138. х 2 =5х
    139. х 2 +х-3=х+6
    140. х 2 =8,1
    141. 2х 2 -18=0
    142. 3х 2 -12х=0
    143. 2,7х 2 =0
    144. х 2 +16=0
    145. Неполные квадратные уравнения с дробями 8 классх 2 — Неполные квадратные уравнения с дробями 8 класс=0
    146. х 2 =7х
    147. х 2 -3х-5=11-3х
    148. х 2 =2,5
    149. 2х 2 -32=0
    150. 3х 2 -15х=0
    151. 2,4х 2 =0
    152. х 2 +49=0
    153. Неполные квадратные уравнения с дробями 8 классх 2 — Неполные квадратные уравнения с дробями 8 класс=0
    154. х 2 =х
    155. х 2 -7х-5=11-7х
    156. х 2 =4,9

    Видео:Квадратное уравнение. 8 класс.Скачать

    Квадратное уравнение. 8 класс.

    По теме: методические разработки, презентации и конспекты

    Определение квадратного уравнения. Неполные квадратные уравнения. План-конспект урока в 8 классе с использованием ЭОР

    Представлен план-конспект урока изучения нового материала с использованием ЭОР в технологии деятельностного метода. Первый урок в теме. Используются индивидуальная и фронтальные формы организации урок.

    ПЛАН-КОНСПЕКТ УРОКА Квадратные уравнения. Неполное квадратное уравнение.

    Предложенный урок по теме с использованием ЭОР.

    Определение квадратного уравнения. Неполные квадратные уравнения.

    план-конспект урока с использованием ЭОР.

    Неполные квадратные уравнения с дробями 8 класс

    АЛГЕБРА 8 класс Урок — практикум по теме «Квадратные уравнения. Неполные квадратные уравнения».

    Цели урока:Закрепление навыка решения неполных квадратных уравнений.Развитие логического мышления, речи, навыков самоконтроля и самооценки.3. Воспитание навыков самостоятельной работы и умений р.

    Неполные квадратные уравнения с дробями 8 класс

    Конспект урока «Определение квадратного уравнения. Неполные квадратные уравнения.»

    Конспект урока «Определение квадратного уравнения. Неполные квадратные уравнения.».

    Неполные квадратные уравнения с дробями 8 класс

    План конспект урока математики(алгебра)в 8 классе по теме:»Определение квадратного уравнения.Неполное квадратное уравнение»

    Урок изучения нового материала.Предметы точных дисциплин(раздел – алгебра ,8 класс)Богомолова Татьяна ЕфимовнаУчитель математикиМБОУ «Верхнекармальская ООШ» Черемшанского муниципального районаРеспубли.

    Неполные квадратные уравнения с дробями 8 класс

    Квадратное уравнение. Неполные квадратные уравнения

    Материал может быть использован на первом уроке по теме «Неполные квадратные уравнения» в классах , работающих по учебнику для 8 класса общеобразовательных учреждений. Авторы: Ю.Н.Макарычев, Н.Г.Миндю.

    💥 Видео

    Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

    Как решать квадратные уравнения. 8 класс. Вебинар | Математика

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

    РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНДСкачать

    РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНД

    МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?Скачать

    МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?

    Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

    Алгебра 8. Урок 11 - Дробно-рациональные уравнения

    Как решать квадратные уравнения без дискриминантаСкачать

    Как решать квадратные уравнения без дискриминанта

    РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19 алгебра 8 классСкачать

    РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19  алгебра 8 класс

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    Как решать неполное квадратное уравнение? 😎Скачать

    Как решать неполное квадратное уравнение? 😎
    Поделиться или сохранить к себе: