Неполное квадратное уравнение – это уравнение вида
в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:
ax 2 + bx = 0, | если c = 0; |
ax 2 + c = 0, | если b = 0; |
ax 2 = 0, | если b = 0 и c = 0. |
- Решение неполных квадратных уравнений
- Неполные квадратные уравнения тренажёр по алгебре (8 класс) на тему
- Скачать:
- Предварительный просмотр:
- Предварительный просмотр:
- Предварительный просмотр:
- По теме: методические разработки, презентации и конспекты
- Неполные квадратные уравнения
- Основные понятия
- Решение неполных квадратных уравнений
- Как решить уравнение ax² = 0
- Как решить уравнение ax² + с = 0
- В двух словах
- Как решить уравнение ax² + bx = 0
- 🔥 Видео
Видео:МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать
Решение неполных квадратных уравнений
Чтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки:
Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:
Чтобы ax + b было равно нулю, нужно, чтобы
x = — | b | . |
a |
Следовательно, уравнение ax 2 + bx = 0 имеет два корня:
x1 = 0 и x2 = — | b | . |
a |
Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.
Пример 1. Решите уравнение:
a 2 — 12a = 0 | |
a(a — 12) = 0 | |
a1 = 0 | a — 12 = 0 |
a2 = 12 |
Пример 2. Решите уравнение:
7x 2 = x | |
7x 2 — x = 0 | |
x(7x — 1) = 0 |
x1 = 0 | 7x — 1 = 0 | ||
7x = 1 | |||
|
Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:
ax 2 = —c, следовательно, x 2 = — | c | . |
a |
В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.
Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем:
В этом случае уравнение будет иметь два противоположных корня:
Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.
Пример 1. Решите уравнение:
24 = 2y 2 | |
24 — 2y 2 = 0 | |
-2y 2 = -24 | |
y 2 = 12 | |
y1 = +√ 12 | y2 = -√ 12 |
Пример 2. Решите уравнение:
b 2 — 16 = 0 | |
b 2 = 16 | |
b1 = 4 | b2 = -4 |
Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения.
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Неполные квадратные уравнения
тренажёр по алгебре (8 класс) на тему
Неполные квадратные уравнения. Самостоятельная работа. Тренажер. Образец.
Видео:30 Алгебра 9 класс Решите неполное Квадратное уравнение примеры решениеСкачать
Скачать:
Вложение | Размер |
---|---|
reshenie_nepolnyh_kvadratnyh_uravneniy.doc | 48.5 КБ |
samostoyatelnaya_rabota_nepolnye_kvadratnye_uravneniya.doc | 54 КБ |
nepolnye_kvadratnye_uravneniya.docx | 19.48 КБ |
Видео:НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 классСкачать
Предварительный просмотр:
Решение неполных квадратных уравнений:
2) 10x 2 + 960x = 0;
6 ) — 0,75x 2 + 1,5x = 0;
6) x 2 — 11,375x = 0;
8) — 0,125x 2 + 0,25x = 0.
Решение неполных квадратных уравнений:
2) 10x 2 + 960x = 0;
6 ) — 0,75x 2 + 1,5x = 0;
6) x 2 — 11,375x = 0;
8) — 0,125x 2 + 0,25x = 0.
Решение неполных квадратных уравнений:
2) 10x 2 + 960x = 0;
6 ) — 0,75x 2 + 1,5x = 0;
6) x 2 — 11,375x = 0;
8) — 0,125x 2 + 0,25x = 0.
1. 1) -162; 0; 2) -96; 0; 3) ±2; 4) 0; 5) ±3; 6) 0; 2; 7) корней нет; 8) 0.
2. 1) 0; 2) ±3; 3) -19; 0; 4) корней нет; 5) 0; 6) 0; 1092; 7) ±4; 8) 0; 2.
Видео:АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | ВидеоурокСкачать
Предварительный просмотр:
Самостоятельная работа по теме: «Неполные квадратные уравнения»
Самостоятельная работа по теме: «Неполные квадратные уравнения»
Самостоятельная работа по теме: «Неполные квадратные уравнения»
Самостоятельная работа по теме: «Неполные квадратные уравнения»
Самостоятельная работа по теме: «Неполные квадратные уравнения»
Самостоятельная работа по теме: «Неполные квадратные уравнения»
Самостоятельная работа по теме: «Неполные квадратные уравнения»
Самостоятельная работа по теме: «Неполные квадратные уравнения»
Видео:РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНДСкачать
Предварительный просмотр:
4) — 14x 2 — 56 = 0;
4) — 4x 2 — 100 = 0;
4) — 14x 2 — 56 = 0;
4) — 4x 2 — 100 = 0;
4) — 14x 2 — 56 = 0;
4) — 4x 2 — 100 = 0;
4) — 14x 2 — 56 = 0;
4) — 4x 2 — 100 = 0;
4) — 14x 2 — 56 = 0;
4) — 4x 2 — 100 = 0;
4) — 14x 2 — 56 = 0;
4) — 4x 2 — 100 = 0;
1 вариант 2 вариант
Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать
По теме: методические разработки, презентации и конспекты
Определение квадратного уравнения. Неполные квадратные уравнения. План-конспект урока в 8 классе с использованием ЭОР
Представлен план-конспект урока изучения нового материала с использованием ЭОР в технологии деятельностного метода. Первый урок в теме. Используются индивидуальная и фронтальные формы организации урок.
ПЛАН-КОНСПЕКТ УРОКА Квадратные уравнения. Неполное квадратное уравнение.
Предложенный урок по теме с использованием ЭОР.
Определение квадратного уравнения. Неполные квадратные уравнения.
план-конспект урока с использованием ЭОР.
АЛГЕБРА 8 класс Урок — практикум по теме «Квадратные уравнения. Неполные квадратные уравнения».
Цели урока:Закрепление навыка решения неполных квадратных уравнений.Развитие логического мышления, речи, навыков самоконтроля и самооценки.3. Воспитание навыков самостоятельной работы и умений р.
Конспект урока «Определение квадратного уравнения. Неполные квадратные уравнения.»
Конспект урока «Определение квадратного уравнения. Неполные квадратные уравнения.».
План конспект урока математики(алгебра)в 8 классе по теме:»Определение квадратного уравнения.Неполное квадратное уравнение»
Урок изучения нового материала.Предметы точных дисциплин(раздел – алгебра ,8 класс)Богомолова Татьяна ЕфимовнаУчитель математикиМБОУ «Верхнекармальская ООШ» Черемшанского муниципального районаРеспубли.
Квадратное уравнение. Неполные квадратные уравнения
Материал может быть использован на первом уроке по теме «Неполные квадратные уравнения» в классах , работающих по учебнику для 8 класса общеобразовательных учреждений. Авторы: Ю.Н.Макарычев, Н.Г.Миндю.
Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
Неполные квадратные уравнения
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать
Основные понятия
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.
Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:
- если D 0, есть два различных корня.
Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.
Неполные квадратные уравнения бывают трех видов:
Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения. Видео:Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать Решение неполных квадратных уравненийКак мы уже знаем, есть три формулы неполных квадратных уравнений:
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль). Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать Как решить уравнение ax² = 0Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0. Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней. Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.
Пример 1. Решить −5x² = 0.
Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса! Видео:Как решать неполное квадратное уравнение? 😎Скачать Как решить уравнение ax² + с = 0Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный. Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами. Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи. Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней. В двух словахНеполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:
Пример 1. Найти решение уравнения 9x² + 4 = 0.
Разделим обе части на 9: Ответ: уравнение 9x² + 4 = 0 не имеет корней. Пример 2. Решить -x² + 9 = 0.
Разделим обе части на -1: Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3. Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать Как решить уравнение ax² + bx = 0Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0. Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника. Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x. Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a. Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня: Пример 1. Решить уравнение 2x² — 32x = 0
Ответ: х = 0 и х = 16. Пример 2. Решить уравнение 3x² — 12x = 0 Разложить левую часть уравнения на множители и найти корни: 🔥 ВидеоАлгоритм решения неполных квадратных уравненийСкачать Как решать неполные квадратные уравнения.Скачать Неполные квадратное уравнение. Алгебра 8 класс. Пример и решение.Скачать Неполные квадратные уравнения.Скачать Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)Скачать РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19 алгебра 8 классСкачать Теорема Виета за 30 сек🦾Скачать |