учебно-методический материал
Лекция «Дифференциальные уравнения второго порядка» по дисциплине «Элементы высшей математики» для студентов 2 курса специальности «Компьютерные системы и комплексы».
Видео:15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

Скачать:
| Вложение | Размер |
|---|---|
| du_2_poryadka.doc | 87 КБ |
Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Предварительный просмотр:
Лекция. Дифференциальные уравнения второго порядка.
1) Уравнения, допускающие понижение порядка.
Рассмотрим дифференциальное уравнение вида: y’’= f(x) . Дважды интегрируем правую часть и получаем общее решение.
Найти общее решение дифференциального уравнения y’’ = x 2 – 2x
Решение :
Данное дифференциальное уравнение имеет вид y’’= f(x) . Дважды интегрируем правую часть и получаем общее решение.
Понижаем степень уравнения до первого порядка:
, где С 1 – константа
Теперь интегрируем правую часть еще раз, получая общее решение:
Ответ: общее решение:
Проверить общее решение такого уравнения обычно очень легко. В данном случае необходимо лишь найти вторую производную:
Получено исходное дифференциальное уравнение y’’ = x 2 – 2x , значит, общее решение найдено правильно.
2) В дифференциальном уравнении в явном виде отсутствует функция у
Простейшее уравнение данного типа в общем виде выглядит так: F(x, y’, y»)=0 .
В этом уравнении всё есть, а «игрека» нет. Точнее, его нет в явном виде , но он обязательно всплывёт в ходе решения. Кроме того, во всех этих уравнениях обязательно присутствует независимая переменная «икс».
Решаются такие уравнения с помощью замены.
Решить неполное дифференциальное уравнение второго порядка: y’’= 5x — 1
Пусть у’ = u , тогда y’’ = u’ , получим u’ = 5x – 1 или
Подставляя обратно в уравнение у’ = u получим:
На заключительном этапе нарисовался партизан «игрек», который, как мы помним, в дифференциальное уравнение в явном виде не входил.
Ответ: Общее решение:
3) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
Дифференциальное уравнение вида: у’’+рy’+qy = f(x)
где коэффициенты p , q – постоянные, называется линейным дифференциальным уравнением второго порядка с постоянными коэффициентами
В теории и практике различают два типа таких уравнений – однородное равнение и неоднородное уравнение .
Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
у’’+рy’+qy = 0 , где p и q – константы (числа), а в правой части – строго ноль.
Неоднородное ДУ второго порядка с постоянными коэффициентами имеет вид:
у’’+рy’+qy = f(x) , где p и q – константы, а f(x) – функция, зависящая только от «икс» . В простейшем случае функция f(x) может быть числом, отличным от нуля .
Чтобы научиться решать неоднородные уравнения необходимо уметь решать однородные уравнения. По этой причине сначала рассмотрим алгоритм решения линейного однородного уравнения второго порядка:
Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение :
По какому принципу составлено характеристическое уравнение, отчётливо видно:
вместо второй производной записываем ;
вместо первой производной записываем просто «лямбду»;
вместо функции у ничего не записываем.
– это обычное квадратное уравнение , которое предстоит решить.
В зависимости от значений корней характеристического уравнения записываем общее решение ЛОДУ с постоянными коэффициентами в виде:
1) Характеристическое уравнение имеет два различных действительных корня
Если характеристическое уравнение имеет два различных действительных корня , (т.е., если дискриминант ), то общее решение однородного уравнения выглядит так:
В случае если один из корней равен нулю, решение очевидным образом упрощается; пусть, например, , тогда общее решение: .
2) Характеристическое уравнение имеет два кратных действительных корня
Если характеристическое уравнение имеет два кратных (совпавших) действительных корня (дискриминант D=0 ), то общее решение однородного уравнения принимает вид: , где – константы.
Вместо в формуле можно было нарисовать , корни всё равно одинаковы.
Если оба корня равны нулю , то общее решение имеет вид: .
Решить дифференциальное уравнение
Решение: составим и решим характеристическое уравнение:
Вычисляя дискриминант, получаем два кратных действительных корня
Ответ: общее решение:
3) Характеристическое уравнение имеет сопряженные комплексные корни ( Данный случай приведен только для ознакомления. Тему «Комплексные числа мы будем проходить позже» )
Если характеристическое уравнение имеет сопряженные комплексные корни , (дискриминант ), то общее решение однородного уравнения принимает вид:
Примечание: Сопряженные комплексные корни почти всегда записывают кратко следующим образом:
Если получаются чисто мнимые сопряженные комплексные корни: , то общее решение упрощается:
Решить однородное дифференциальное уравнение второго порядка
Решение: Составим и решим характеристическое уравнение:
Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

Неполные дифференциальные уравнения второго порядка
Линейным называется дифференциальное уравнение n -го порядка , если оно 1-ой степени относительно искомой функции y ( x ) и ее производных 
Если коэффициент P 0 ( x ) ≠ 1, то на него можно поделить и после соответствующих переобозначений получить:
Уравнение (8.43) называется уравнением с переменными коэффициентами. Предположим, что в нем функции 

Примечание. Частным случаем (8.43) является линейное дифференциальное уравнение 2-го порядка с переменными коэффициентами:
Если в уравнении (8.43) f ( x ) ≡ 0, то оно называется однородным, если f ( x ) ≠ 0, то неоднородным.
Теорема 8.3 (о структуре общего решения линейного неоднородного ДУ). Общее решение линейного неоднородного дифференциального уравнения представляет собой сумму общего решения соответствующего однородного и некоторого частного решения неоднородного уравнения 
Однородное дифференциальное уравнение, соответствующее неоднородному уравнению (8.43), имеет вид:
Пусть в уравнении (8.45) функции 
и называется линейным однородным дифференциальным уравнением n -го порядка с постоянными коэффициентами , где 
Рассмотрим решения уравнений (8.45) и (8.46). Обозначим полную совокупность их линейно независимых решений через 
где ci – константы интегрирования.
Перейдем к конструированию функций 
где 
– также решение уравнений (8.45) и (8.46).
Рассмотрим одну из функций (8.48) – функцию y = e λx как решение для уравнения (8.46) с постоянными коэффициентами. Продифференцируем ее n раз:
Так как e λx ≠ 0 , то 
–алгебраическое уравнение n -ой степени относительно λ, называемое характеристическим уравнением для уравнения (8.46). Известно, что уравнение n -ой степени имеет равно n корней как действительных, так и комплексных, с учетом их кратности. Значит, характеристическое уравнение (8.50) дает нам n значений числа λ, ранее обозначенных нами через 
Рассмотрим наиболее распространенный частный случай уравнения (8.46) – его аналог 2-го порядка:
Для данного уравнения характеристическое уравнение (8.50) принимает вид:
Уравнение (8.52) является квадратным относительно λ. В зависимости от дискриминанта D характеристического уравнения рассматривают три случая, приведенных в таблице 8.1.

Пример 8.17. Найти общее решение уравнений:
а) Составляем характеристическое уравнение λ 2 +2 λ – 15 = 0. Корнями этого уравнения будут λ 1 = –5 и λ 2 = 3 . Тогда, применяя (8.53), получаем общее решение: y=C 1 e – 5x +C 2 e 3x .
б) Составляем характеристическое уравнение λ 2 – 16 λ + 64 = 0.
Решая это уравнение, получим λ 1 = λ 2 = 8 . Так как корни равные, то, применяя (8.54), будем иметь:
в) Характеристическое уравнение λ 2 – 4 λ + 13 = 0 имеет комплексные корни λ 1 = 2+3 i и λ 2 = 2 –3 i . Положив в (8.55) α=2 и β = 3, получим общее решение: 
г) Характеристическое уравнение λ 2 +9 = 0 имеет корни λ 1;2 = ± 3 i . П олагая в (8.55) α=0 и β = 3, получим общее решение
Рассмотрим теперь линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:
Теорема 8.4. Пусть задано линейное дифференциальное неоднородное уравнение второго порядка с постоянными коэффициентами и п равой частью специального вида
1. Если 
где 
2. Если 

Рассмотрим в таблице 8.2 некоторые случаи составления частного решения линейного неоднородного дифференциального уравнения (8.57) по специальному виду его правой части.
Пример 8.18. Найти общее решение уравнения 
Решение. Найдем общее решение соответствующего однородного ДУ: 
Пример 8.19. Решить уравнение 
уравнения 

Находим частное решение y ч.н. . Правая часть неоднородного уравнения в нашем случае имеет вид
Отсюда, сравнивая коэффициенты при косинусе и синусе, имеем 

Пример 8.20. Найти частное решение уравнения 

Решение . Находим общее решение однородного уравнения 
В правой части заданного уравнения имеется показательная функция. Так как в данном случае α=2 совпадает с одним из корней характеристического уравнения, то частное решение следует искать в виде функции Axe 2 x . Таким образом, y ч.н. = Axe 2 x . Дифференцируя дважды это равенство, по лучим: 

Используя начальные условия, определим значения произвольных постоянных C 1 и C 2 . Дифференцируя общее решение (8.60), получим:
Подставим в общее решение (8.60) значения x = 0 и y = 2, будем иметь 2 = C 1 + C 2 . Подставим в выражение для 



Теорема 8.5 (о наложении решений). Если правая часть уравнения (8.56) представляет собой сумму двух функций: 


является частным решением данного уравнения
🔥 Видео
14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

Математика без Ху!ни. Линейные неоднородные дифференциальные уравнения 2 порядка.Скачать

Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать

Линейное дифференциальное уравнение Коши-ЭйлераСкачать

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядкаСкачать

Однородное линейное дифференциальное уравнение. Алгоритм решенияСкачать

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать

Однородные дифференциальные уравнения первого порядка #calculus #differentialequation #maths #Скачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

17. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами Ч2Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать








