Неполное дифференциальное уравнение 2 порядка

Неполное дифференциальное уравнение 2 порядка

Линейным называется дифференциальное уравнение n -го порядка , если оно 1-ой степени относительно искомой функции y ( x ) и ее производных Неполное дифференциальное уравнение 2 порядка , то есть имеет вид:

Если коэффициент P 0 ( x ) ≠ 1, то на него можно поделить и после соответствующих переобозначений получить:

Уравнение (8.43) называется уравнением с переменными коэффициентами. Предположим, что в нем функции Неполное дифференциальное уравнение 2 порядка , непрерывны на интервале Неполное дифференциальное уравнение 2 порядка . Тогда для уравнения (8.43) на данном интервале имеет место задача Коши, сформулированная нами ранее.

Примечание. Частным случаем (8.43) является линейное дифференциальное уравнение 2-го порядка с переменными коэффициентами:

Если в уравнении (8.43) f ( x ) ≡ 0, то оно называется однородным, если f ( x ) ≠ 0, то неоднородным.

Теорема 8.3 (о структуре общего решения линейного неоднородного ДУ). Общее решение линейного неоднородного дифференциального уравнения представляет собой сумму общего решения соответствующего однородного и некоторого частного решения неоднородного уравнения Неполное дифференциальное уравнение 2 порядка . Запишем коротко: Неполное дифференциальное уравнение 2 порядка

Однородное дифференциальное уравнение, соответствующее неоднородному уравнению (8.43), имеет вид:

Пусть в уравнении (8.45) функции Неполное дифференциальное уравнение 2 порядка . Тогда оно принимает вид:

и называется линейным однородным дифференциальным уравнением n -го порядка с постоянными коэффициентами , где Неполное дифференциальное уравнение 2 порядка – функции, n раз дифференцируемые.

Рассмотрим решения уравнений (8.45) и (8.46). Обозначим полную совокупность их линейно независимых решений через Неполное дифференциальное уравнение 2 порядка . Тогда, по свойству решений однородного уравнения, их линейная комбинация также является решением уравнения (8.45) и (8.46), т о есть общее решение может быть записано в виде:

где ci – константы интегрирования.

Перейдем к конструированию функций Неполное дифференциальное уравнение 2 порядка . Какого они вида? Так как эти функции в уравнениях (8.45) и (8.46) n раз дифференцируемы, то их конструкция при дифференцировании не меняется. Это возможно в случае экспоненциального вида функций, то есть при

где Неполное дифференциальное уравнение 2 порядка , . Отсюда, линейная комбинация функций (8.48):

– также решение уравнений (8.45) и (8.46).

Рассмотрим одну из функций (8.48) – функцию y = e λx как решение для уравнения (8.46) с постоянными коэффициентами. Продифференцируем ее n раз:

Так как e λx 0 , то Неполное дифференциальное уравнение 2 порядка ( 8.50)

–алгебраическое уравнение n -ой степени относительно λ, называемое характеристическим уравнением для уравнения (8.46). Известно, что уравнение n -ой степени имеет равно n корней как действительных, так и комплексных, с учетом их кратности. Значит, характеристическое уравнение (8.50) дает нам n значений числа λ, ранее обозначенных нами через Неполное дифференциальное уравнение 2 порядка , которые при подстановке в (8.49) приводит нас к окончательному виду общего решения линейного однородного дифференциального уравнения (8.46) с постоянными коэффициентами.

Рассмотрим наиболее распространенный частный случай уравнения (8.46) – его аналог 2-го порядка:

Для данного уравнения характеристическое уравнение (8.50) принимает вид:

Уравнение (8.52) является квадратным относительно λ. В зависимости от дискриминанта D характеристического уравнения рассматривают три случая, приведенных в таблице 8.1.

Неполное дифференциальное уравнение 2 порядка

Пример 8.17. Найти общее решение уравнений:

Неполное дифференциальное уравнение 2 порядка

а) Составляем характеристическое уравнение λ 2 +2 λ – 15 = 0. Корнями этого уравнения будут λ 1 = –5 и λ 2 = 3 . Тогда, применяя (8.53), получаем общее решение: y=C 1 e – 5x +C 2 e 3x .

б) Составляем характеристическое уравнение λ 2 – 16 λ + 64 = 0.

Решая это уравнение, получим λ 1 = λ 2 = 8 . Так как корни равные, то, применяя (8.54), будем иметь:

в) Характеристическое уравнение λ 2 – 4 λ + 13 = 0 имеет комплексные корни λ 1 = 2+3 i и λ 2 = 2 –3 i . Положив в (8.55) α=2 и β = 3, получим общее решение: Неполное дифференциальное уравнение 2 порядка .

г) Характеристическое уравнение λ 2 +9 = 0 имеет корни λ 1;2 = ± 3 i . П олагая в (8.55) α=0 и β = 3, получим общее решение Неполное дифференциальное уравнение 2 порядка

Рассмотрим теперь линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:

Теорема 8.4. Пусть задано линейное дифференциальное неоднородное уравнение второго порядка с постоянными коэффициентами и п равой частью специального вида

1. Если Неполное дифференциальное уравнение 2 порядка не является корнем характеристического уравнения соответствующего однородного уравнения, то частное решение уравнения (8.57) имеет вид:

где Неполное дифференциальное уравнение 2 порядка – многочлены общего вида (с неопределенными коэффициентами).

2. Если Неполное дифференциальное уравнение 2 порядка – корень характеристического уравнения кратности s , то частное решение уравнения (8.57) имеет вид:

Неполное дифференциальное уравнение 2 порядка – многочлены общего вида Неполное дифференциальное уравнение 2 порядка

Рассмотрим в таблице 8.2 некоторые случаи составления частного решения линейного неоднородного дифференциального уравнения (8.57) по специальному виду его правой части.

Неполное дифференциальное уравнение 2 порядка

Пример 8.18. Найти общее решение уравнения Неполное дифференциальное уравнение 2 порядка .

Решение. Найдем общее решение соответствующего однородного ДУ: Неполное дифференциальное уравнение 2 порядка . Х арактеристическое уравнение λ 2 +2 λ +1 = 0 имеет корень λ1 = 1 кратности 2 (смотри таблицу 8.1). Значит, yo . o . = c 1 e x + c 2 x e x . Находим частное решение исходного уравнения. В нем правая часть x –4=( x –4) e 0 x есть формула вида P 1 ( x ) e 0 x , причем α= 0 не является корнем характеристического уравнения: α λ . Поэтому согласно формуле (8.58), частное решение y ч.н. ищем в виде y ч.н. = Q 1 ( x ) e 0 x , т.е. y ч.н. = Ax + B , где A и B – неопределенные коэффициенты. Тогда

Пример 8.19. Решить уравнение Неполное дифференциальное уравнение 2 порядка .

уравнения Неполное дифференциальное уравнение 2 порядка . Характеристическое уравнение λ 2 – 4 λ +13 = 0 имеет корни λ1 = 2+3 i , λ 2 = 2 –3 i (смотри таблицу 8.1). Следовательно, Неполное дифференциальное уравнение 2 порядка .

Находим частное решение y ч.н. . Правая часть неоднородного уравнения в нашем случае имеет вид

Неполное дифференциальное уравнение 2 порядка

Отсюда, сравнивая коэффициенты при косинусе и синусе, имеем Неполное дифференциальное уравнение 2 порядка . Следовательно, A = 1, B = – 3 . Поэтому Неполное дифференциальное уравнение 2 порядка . И наконец, с учетом теоремы 8.3 получаем общее решение заданного линейного неоднородного ДУ в виде:

Неполное дифференциальное уравнение 2 порядка

Пример 8.20. Найти частное решение уравнения Неполное дифференциальное уравнение 2 порядка , удовлетворяющее начальным условиям Неполное дифференциальное уравнение 2 порядка .

Решение . Находим общее решение однородного уравнения Неполное дифференциальное уравнение 2 порядка . Характеристическое уравнение λ 2 – λ – 2 = 0 имеет два корня λ 1 = –1 и λ 2 = 2 (смотри таблицу 8.1) ; тогда yo . o . = C 1 ex + C 2 e 2 x – общее решение соответствующего однородного ДУ.

В правой части заданного уравнения имеется показательная функция. Так как в данном случае α=2 совпадает с одним из корней характеристического уравнения, то частное решение следует искать в виде функции Axe 2 x . Таким образом, y ч.н. = Axe 2 x . Дифференцируя дважды это равенство, по лучим: Неполное дифференциальное уравнение 2 порядка . Подставим y ч.н. и ее производные в левую часть заданного уравнения и найдем коэффициент A : Неполное дифференциальное уравнение 2 порядка . Следовательно, частное решение y ч.н. = 3xe 2 x , общее решение

Используя начальные условия, определим значения произвольных постоянных C 1 и C 2 . Дифференцируя общее решение (8.60), получим:

Подставим в общее решение (8.60) значения x = 0 и y = 2, будем иметь 2 = C 1 + C 2 . Подставим в выражение для Неполное дифференциальное уравнение 2 порядка значения x = 0 и Неполное дифференциальное уравнение 2 порядка , будем иметь: 13 = – C 1 +2 C 2 +3 ; 10 = – C 1 + C 2 . Из этих уравнений составим систему Неполное дифференциальное уравнение 2 порядка , из которой находим: C 1 = – 2 и C 2 =4 . Таким образом, Неполное дифференциальное уравнение 2 порядка есть то частное решение, которое удовлетворяет заданным начальным условиям Неполное дифференциальное уравнение 2 порядка

Теорема 8.5 (о наложении решений). Если правая часть уравнения (8.56) представляет собой сумму двух функций: Неполное дифференциальное уравнение 2 порядка , а y 1 ч.н. и y 2 ч.н. – частные решения уравнений Неполное дифференциальное уравнение 2 порядка и Неполное дифференциальное уравнение 2 порядка соответственно, то функция

является частным решением данного уравнения Неполное дифференциальное уравнение 2 порядка

Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Лекция. Дифференциальные уравнения второго порядка
учебно-методический материал

Неполное дифференциальное уравнение 2 порядка

Лекция «Дифференциальные уравнения второго порядка» по дисциплине «Элементы высшей математики» для студентов 2 курса специальности «Компьютерные системы и комплексы».

Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Скачать:

ВложениеРазмер
du_2_poryadka.doc87 КБ

Видео:Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать

Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.

Предварительный просмотр:

Лекция. Дифференциальные уравнения второго порядка.

1) Уравнения, допускающие понижение порядка.

Рассмотрим дифференциальное уравнение вида: y’’= f(x) . Дважды интегрируем правую часть и получаем общее решение.

Найти общее решение дифференциального уравнения y’’ = x 2 – 2x
Решение :

Данное дифференциальное уравнение имеет вид y’’= f(x) . Дважды интегрируем правую часть и получаем общее решение.

Понижаем степень уравнения до первого порядка:

Неполное дифференциальное уравнение 2 порядка, где С 1 – константа

Теперь интегрируем правую часть еще раз, получая общее решение:

Ответ: общее решение:

Проверить общее решение такого уравнения обычно очень легко. В данном случае необходимо лишь найти вторую производную:

Получено исходное дифференциальное уравнение y’’ = x 2 – 2x , значит, общее решение найдено правильно.

2) В дифференциальном уравнении в явном виде отсутствует функция у

Простейшее уравнение данного типа в общем виде выглядит так: F(x, y’, y»)=0 .

В этом уравнении всё есть, а «игрека» нет. Точнее, его нет в явном виде , но он обязательно всплывёт в ходе решения. Кроме того, во всех этих уравнениях обязательно присутствует независимая переменная «икс».

Решаются такие уравнения с помощью замены.

Решить неполное дифференциальное уравнение второго порядка: y’’= 5x — 1

Пусть у’ = u , тогда y’’ = u’ , получим u’ = 5x – 1 или

Подставляя обратно в уравнение у’ = u получим:

На заключительном этапе нарисовался партизан «игрек», который, как мы помним, в дифференциальное уравнение в явном виде не входил.

Ответ: Общее решение:

3) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Дифференциальное уравнение вида: у’’+рy’+qy = f(x)

где коэффициенты p , q – постоянные, называется линейным дифференциальным уравнением второго порядка с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное равнение и неоднородное уравнение .

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:

у’’+рy’+qy = 0 , где p и q – константы (числа), а в правой части – строго ноль.

Неоднородное ДУ второго порядка с постоянными коэффициентами имеет вид:

у’’+рy’+qy = f(x) , где p и q – константы, а f(x) – функция, зависящая только от «икс» . В простейшем случае функция f(x) может быть числом, отличным от нуля .

Чтобы научиться решать неоднородные уравнения необходимо уметь решать однородные уравнения. По этой причине сначала рассмотрим алгоритм решения линейного однородного уравнения второго порядка:

Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение :

По какому принципу составлено характеристическое уравнение, отчётливо видно:

вместо второй производной записываем ;

вместо первой производной записываем просто «лямбду»;

вместо функции у ничего не записываем.

– это обычное квадратное уравнение , которое предстоит решить.

В зависимости от значений корней характеристического уравнения записываем общее решение ЛОДУ с постоянными коэффициентами в виде:

1) Характеристическое уравнение имеет два различных действительных корня

Если характеристическое уравнение имеет два различных действительных корня , (т.е., если дискриминант ), то общее решение однородного уравнения выглядит так:

В случае если один из корней равен нулю, решение очевидным образом упрощается; пусть, например, , тогда общее решение: .

2) Характеристическое уравнение имеет два кратных действительных корня

Если характеристическое уравнение имеет два кратных (совпавших) действительных корня (дискриминант D=0 ), то общее решение однородного уравнения принимает вид: , где – константы.

Вместо в формуле можно было нарисовать , корни всё равно одинаковы.

Если оба корня равны нулю , то общее решение имеет вид: .

Решить дифференциальное уравнение

Решение: составим и решим характеристическое уравнение:

Вычисляя дискриминант, получаем два кратных действительных корня

Ответ: общее решение:

3) Характеристическое уравнение имеет сопряженные комплексные корни ( Данный случай приведен только для ознакомления. Тему «Комплексные числа мы будем проходить позже» )

Если характеристическое уравнение имеет сопряженные комплексные корни , (дискриминант ), то общее решение однородного уравнения принимает вид:

Примечание: Сопряженные комплексные корни почти всегда записывают кратко следующим образом:

Если получаются чисто мнимые сопряженные комплексные корни: , то общее решение упрощается:

Решить однородное дифференциальное уравнение второго порядка

Решение: Составим и решим характеристическое уравнение:

Видео:Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

Лекция по высшей математике»Дифференциальные уравнения второго порядка»(для 26 гр.)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

1) ОСНОВНЫЕ ПОНЯТИЯ

Дифференциальным уравнением второго порядка называется уравнение, содержащее неизвестную (искомую) функцию у(х) , независимую переменную х , первую и вторую производные у’, у» или дифференциалы

Дифференциальное уравнение второго порядка символически можно записать в общем виде следующим образом:

Дифференциальное уравнение второго порядка, разрешенное относительно второй производной, имеет вид:

Решением дифференциального уравнения называется всякая функция, которая обращает его в тождество. Дифференциальное уравнение второго порядка имеет бесчисленное множество решений, которые можно представить в виде функции Эта совокупность решений называется общим решением .

Функция, получающаяся из общего решения при конкретных значениях постоянных С 1 и С 2 , называется частным решением . Частное решение находится при помощи задания начальных условий: у(х=х 0 )=у 0 и у'(х=х 0 )=у 0 , где х 0 , у 0 , у 0 – конкретные числа.

Задача отыскания частного решения дифференциального уравнения, удовлетворяющего начальному условию, называется задачей Коши . Практически задачу Коши решают следующим образом: находят общее решение, затем в него подставляют начальные условия, получают систему двух уравнений, определяют произвольные постоянные С 1 и С 2 и подставляют их конкретные значения в общее решение.

2) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО

ПОРЯДКА, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА

Рассмотрим некоторые типы дифференциальных уравнений второго порядка, которые позволяют понизить порядок уравнения и привести его к уравнениям первого порядка.

2.1. Дифференциальное уравнение вида

Правая часть уравнения не содержит у и у’ . Уравнение решается путем последовательного интегрирования. Найдем сначала первую производную (промежуточное общее решение):

Интегрируя еще раз, получим общее решение:

Пример 1. Найти частное решение уравнения при заданных начальных условиях у(х= 0 )= 1 и у'(х= 0 )= 1.

Решение. Последовательно интегрируя, найдем сначала первую производную (промежуточное общее решение):

Интегрируя еще раз, получим общее решение:

Так как мы интегрировали дважды, то получили две произвольные постоянные С 1 и С 2 . Подставляя начальные условия в соотношения (2.1) и (2.2), получим С 1 =1 и С 2 =1. Следовательно, частное решение имеет вид:

2.2. Дифференциальное уравнение вида

Правая часть уравнения не содержит искомой функции у . Уравнение решается с помощью подстановки:

где z – функция от х . Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка: .

Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:

Разделяя переменные и интегрируя, получим общее решение

Пример 2. Найти общее решение уравнения

Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:

Разделяем переменные: Интегрируем:

Получаем промежуточное общее решение: или

Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными: или

Интегрируя, получим общее решение:

Пример 3. Найти общее решение уравнения

Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:

Уравнение (2.3) является однородным и решается с помощью подстановки:

Подставляя (2.4) в (2.3), получим дифференциальное уравнение с разделяющимися переменными:

Сокращаем на х и разделяем переменные:

Интеграл в левой части равенства (2.5) вычисляем методом замены переменной:

После интегрирования (2.5) получаем промежуточное общее решение:

Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или .

Разделяем переменные и интегрируем: (2.6)

Интеграл, стоящий в правой части, вычисляем с помощью формулы интегрирования по частям:

После интегрирования (2.6) получим общее решение:

Пример 4. Найти общее решение уравнения

Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:

Уравнение (2.7) является линейным неоднородным и решается с помощью подстановки:

Подставляя (2.8) в (2.7), получим:

Квадратную скобку приравняем к нулю и решим полученное уравнение с разделяющимися переменными:

Разделяем переменные и интегрируем: Получаем: или

Функцию подставляем в соотношение (2.9):

Сокращаем на х , разделяем переменные и интегрируем:

Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или

Разделяем переменные и интегрируем:

Интеграл, стоящий в правой части (2.10), вычисляем с помощью формулы интегрирования по частям:

После интегрирования (2.10) получим общее решение:

2.3. Дифференциальное уравнение вида

Правая часть уравнения не содержит независимой переменной х . Уравнение решается с помощью подстановки: или

где z – функция от у , т.е. z = z [ y ( x )] – сложная функция от х . Тогда :

Исходное уравнение преобразуется в дифференциальное уравнение первого порядка:

где z искомая функция, у – независимая переменная.

Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:

Разделяя переменные и интегрируя, получим общее решение

Пример 5. Найти общее решение уравнения

Решение. Сделаем подстановку:

Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:

Сокращаем на z ( z ≠0) и разделяем переменные:

Получаем промежуточное общее решение: или

Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными:

Разделяем переменные: Интегрируя, получим общее решение:

3) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейные однородные дифференциальные уравнения.

Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида , (1)

т.е. уравнение, которое содержит искомую функцию и её производные только в первой степени и не содержит их произведений. В этом уравнении и — некоторые числа, а функция задана на некотором интервале .

Если на интервале , то уравнение (1) примет вид , (2)

и называется линейным однородным . В противном случае уравнение (1) называется линейным неоднородным . Рассмотрим комплексную функцию , (3)

где и — действительные функции. Если функция (3) является комплексным решением уравнения (2), то и действительная часть , и мнимая часть решения в отдельности являются решениями этого же однородного уравнения. Таким образом, всякое комплексное решение уравнения (2) порождает два действительных решения этого уравнения.

Решения однородного линейного уравнения обладают свойствами:

Если есть решение уравнения (2), то и функция , где С – произвольная постоянная, также будет решением уравнения (2);

Если и есть решения уравнения (2), то и функция также будет решением уравнения (2);

Если и есть решения уравнения (2), то их линейная комбинация также будет решением уравнения (2), где и – произвольные постоянные.

Функции и называются линейно зависимыми на интервале , если существуют такие числа и , не равные нулю одновременно, что на этом интервале выполняется равенство

Если равенство (4) имеет место только тогда, когда и , то функции и называются линейно независимыми на интервале .

Пример 1 . Функции и линейно зависимы, так как на всей числовой прямой. В этом примере .

Пример 2 . Функции и линейно независимы на любом интервале, т. к. равенство возможно лишь в случае, когда и , и .

Построение общего решения линейного однородного уравнения.

Для того, чтобы найти общее решение уравнения (2), нужно найти два его линейно независимых решения и . Линейная комбинация этих решений , где и – произвольные постоянные, и даст общее решение линейного однородного уравнения. Линейно независимые решения уравнения (2) будем искать

в виде , (5) ,где – некоторое число. Тогда , . Подставим эти выражения в уравнение (2):

Так как , то . Таким образом, функция будет решением уравнения (2), если будет удовлетворять уравнению . (6)

Уравнение (6) называется характеристическим уравнением для уравнения (2). Это уравнение является алгебраическим квадратным уравнением.

Пусть и есть корни этого уравнения. Они могут быть или действительными и различными, или комплексными, или действительными и равными. Рассмотрим эти случаи.

Пусть корни и характеристического уравнения действительные и различны. Тогда решениями уравнения (2) будут функции и . Эти решения линейно независимы, так как равенство может выполняться лишь тогда, когда и , и . Поэтому общее решение уравнения (2) имеет вид , где и — произвольные постоянные.

Пример 3 . Найти общее решение дифференциального уравнения .

Решение . Характеристическим уравнением для данного дифференциального будет . Решив это квадратное уравнение, найдём его корни и . Функции и являются решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .

Комплексным числом называется выражение вида , где и — действительные числа, а называется мнимой единицей. Если , то число называется чисто мнимым. Если же , то число отождествляется с действительным числом .

Число называется действительной частью комплексного числа, а — мнимой частью. Если два комплексных числа отличаются друг от друга только знаком мнимой части, то они зазываются сопряжёнными: ,

Пример 4 . Решить квадратное уравнение .

Решение . Дискриминант уравнения . Тогда . Аналогично, . Таким образом, данное квадратное уравнение имеет сопряжённые комплексные корни.

Пусть корни характеристического уравнения комплексные , т.е. , , где . Решения уравнения (2) можно записать в виде , или , . По формулам Эйлера: , .

Тогда , . Как известно, если комплексная функция является решением лин. одн. ур-я, то решениями этого уравнения являются и действительная, и мнимая части этой функции. Таким образом, решениями уравнения (2) будут функции и . Так как равенство

может выполняться только в том случае, если и , то эти решения линейно независимы. Следовательно, общее решение уравнения (2) имеет вид ,

где и — произвольные постоянные.

Пример 5 . Найти общее решение дифференциального уравнения .

Решение . Уравнение является характеристическим для данного дифференциального. Решим его и получим комплексные корни , . Функции и являются линейно независимыми решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .

Пусть корни характеристического уравнения действительные и равные, т.е. . Тогда решениями уравнения (2) являются функции и . Эти решения линейно независимы, так как выражение может быть тождественно равным нулю только тогда, когда и . Следовательно, общее решение уравнения (2) имеет вид .

Пример 6 . Найти общее решение дифференциального уравнения .

Решение . Характеристическое уравнение имеет равные корни . В этом случае линейно независимыми решениями дифференциального уравнения являются функции и . Общее решение имеет вид .

Неоднородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами и специальной правой частью.

Общее решение линейного неоднородного уравнения (1) равно сумме общего решения соответствующего однородного уравнения и любого частного решения неоднородного уравнения: .

В некоторых случаях частное решение неоднородного уравнения можно найти довольно просто по виду правой части уравнения (1). Рассмотрим случаи, когда это возможно.

Пусть неоднородное уравнение имеет вид , (7)

т.е. правая часть неоднородного уравнения является многочленом степени m . Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде многочлена степени m , т.е. .

Коэффициенты определяются в процессе нахождения частного решения.

Если же является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде .

Пример 7 . Найти общее решение дифференциального уравнения .

Решение . Соответствующим однородным уравнением для данного уравнения является

. Его характеристическое уравнение имеет корни и .

Общее решение однородного уравнения имеет вид .

Так как не является корнем характеристического уравнения, то частное решение неоднородного уравнения будем искать в виде функции . Найдём производные этой функции , и подставим их в данное уравнение :

или . Приравняем коэффициенты при и свободные члены: Решив данную систему , получим , . Тогда частное решение неоднородного уравнения имеет вид , а общим решением данного неоднородного уравнения будет сумма общего решения соответствующего однородного уравнения и частного решения неоднородного:

Пусть неоднородное уравнение имеет вид (8)

Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде . Если же есть корень характеристического уравнения кратности k ( k =1 или k =2), то в этом случае частное решение неоднородного уравнения будет иметь вид .

Пример 8 . Найти общее решение дифференциального уравнения .

Решение . Характеристическое уравнение для соответствующего однородного уравнения имеет вид . Его корни , . В этом случае общее решение соответствующего однородного уравнения записывается в виде .

Так как число 3 не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде . Найдём производные первого и второго порядков: ,. Подставим в дифференциальное уравнение: +,

Приравняем коэффициенты при и свободные члены:

Тогда частное решение данного уравнения имеет вид , а общее решение

💥 Видео

14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Математика без Ху!ни. Линейные неоднородные дифференциальные уравнения 2 порядка.Скачать

Математика без Ху!ни. Линейные неоднородные дифференциальные уравнения 2 порядка.

Неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами МЕТОДОМ ЛАПЛАСАСкачать

Неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами МЕТОДОМ ЛАПЛАСА

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядка

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейное неоднородное дифференциальное уравнение 2 способаСкачать

Линейное неоднородное дифференциальное уравнение 2 способа

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Пример 66. Решить дифференциальное уравнение 2 порядкаСкачать

Пример 66. Решить дифференциальное уравнение 2 порядка

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами

18. Линейные неоднородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. часть 3Скачать

18. Линейные неоднородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. часть 3

19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать

19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядка

Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать

Приведение ДУ 2 порядка в частных производных к каноническому виду
Поделиться или сохранить к себе: