Линейным называется дифференциальное уравнение n -го порядка , если оно 1-ой степени относительно искомой функции y ( x ) и ее производных 
Если коэффициент P 0 ( x ) ≠ 1, то на него можно поделить и после соответствующих переобозначений получить:
Уравнение (8.43) называется уравнением с переменными коэффициентами. Предположим, что в нем функции 

Примечание. Частным случаем (8.43) является линейное дифференциальное уравнение 2-го порядка с переменными коэффициентами:
Если в уравнении (8.43) f ( x ) ≡ 0, то оно называется однородным, если f ( x ) ≠ 0, то неоднородным.
Теорема 8.3 (о структуре общего решения линейного неоднородного ДУ). Общее решение линейного неоднородного дифференциального уравнения представляет собой сумму общего решения соответствующего однородного и некоторого частного решения неоднородного уравнения 
Однородное дифференциальное уравнение, соответствующее неоднородному уравнению (8.43), имеет вид:
Пусть в уравнении (8.45) функции 
и называется линейным однородным дифференциальным уравнением n -го порядка с постоянными коэффициентами , где 
Рассмотрим решения уравнений (8.45) и (8.46). Обозначим полную совокупность их линейно независимых решений через 
где ci – константы интегрирования.
Перейдем к конструированию функций 
где 
– также решение уравнений (8.45) и (8.46).
Рассмотрим одну из функций (8.48) – функцию y = e λx как решение для уравнения (8.46) с постоянными коэффициентами. Продифференцируем ее n раз:
Так как e λx ≠ 0 , то 
–алгебраическое уравнение n -ой степени относительно λ, называемое характеристическим уравнением для уравнения (8.46). Известно, что уравнение n -ой степени имеет равно n корней как действительных, так и комплексных, с учетом их кратности. Значит, характеристическое уравнение (8.50) дает нам n значений числа λ, ранее обозначенных нами через 
Рассмотрим наиболее распространенный частный случай уравнения (8.46) – его аналог 2-го порядка:
Для данного уравнения характеристическое уравнение (8.50) принимает вид:
Уравнение (8.52) является квадратным относительно λ. В зависимости от дискриминанта D характеристического уравнения рассматривают три случая, приведенных в таблице 8.1.

Пример 8.17. Найти общее решение уравнений:
а) Составляем характеристическое уравнение λ 2 +2 λ – 15 = 0. Корнями этого уравнения будут λ 1 = –5 и λ 2 = 3 . Тогда, применяя (8.53), получаем общее решение: y=C 1 e – 5x +C 2 e 3x .
б) Составляем характеристическое уравнение λ 2 – 16 λ + 64 = 0.
Решая это уравнение, получим λ 1 = λ 2 = 8 . Так как корни равные, то, применяя (8.54), будем иметь:
в) Характеристическое уравнение λ 2 – 4 λ + 13 = 0 имеет комплексные корни λ 1 = 2+3 i и λ 2 = 2 –3 i . Положив в (8.55) α=2 и β = 3, получим общее решение: 
г) Характеристическое уравнение λ 2 +9 = 0 имеет корни λ 1;2 = ± 3 i . П олагая в (8.55) α=0 и β = 3, получим общее решение
Рассмотрим теперь линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:
Теорема 8.4. Пусть задано линейное дифференциальное неоднородное уравнение второго порядка с постоянными коэффициентами и п равой частью специального вида
1. Если 
где 
2. Если 

Рассмотрим в таблице 8.2 некоторые случаи составления частного решения линейного неоднородного дифференциального уравнения (8.57) по специальному виду его правой части.
Пример 8.18. Найти общее решение уравнения 
Решение. Найдем общее решение соответствующего однородного ДУ: 
Пример 8.19. Решить уравнение 
уравнения 

Находим частное решение y ч.н. . Правая часть неоднородного уравнения в нашем случае имеет вид
Отсюда, сравнивая коэффициенты при косинусе и синусе, имеем 

Пример 8.20. Найти частное решение уравнения 

Решение . Находим общее решение однородного уравнения 
В правой части заданного уравнения имеется показательная функция. Так как в данном случае α=2 совпадает с одним из корней характеристического уравнения, то частное решение следует искать в виде функции Axe 2 x . Таким образом, y ч.н. = Axe 2 x . Дифференцируя дважды это равенство, по лучим: 

Используя начальные условия, определим значения произвольных постоянных C 1 и C 2 . Дифференцируя общее решение (8.60), получим:
Подставим в общее решение (8.60) значения x = 0 и y = 2, будем иметь 2 = C 1 + C 2 . Подставим в выражение для 



Теорема 8.5 (о наложении решений). Если правая часть уравнения (8.56) представляет собой сумму двух функций: 


является частным решением данного уравнения
Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Лекция. Дифференциальные уравнения второго порядка
учебно-методический материал
Лекция «Дифференциальные уравнения второго порядка» по дисциплине «Элементы высшей математики» для студентов 2 курса специальности «Компьютерные системы и комплексы».
Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

Скачать:
| Вложение | Размер |
|---|---|
| du_2_poryadka.doc | 87 КБ |
Видео:Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать

Предварительный просмотр:
Лекция. Дифференциальные уравнения второго порядка.
1) Уравнения, допускающие понижение порядка.
Рассмотрим дифференциальное уравнение вида: y’’= f(x) . Дважды интегрируем правую часть и получаем общее решение.
Найти общее решение дифференциального уравнения y’’ = x 2 – 2x
Решение :
Данное дифференциальное уравнение имеет вид y’’= f(x) . Дважды интегрируем правую часть и получаем общее решение.
Понижаем степень уравнения до первого порядка:
, где С 1 – константа
Теперь интегрируем правую часть еще раз, получая общее решение:
Ответ: общее решение:
Проверить общее решение такого уравнения обычно очень легко. В данном случае необходимо лишь найти вторую производную:
Получено исходное дифференциальное уравнение y’’ = x 2 – 2x , значит, общее решение найдено правильно.
2) В дифференциальном уравнении в явном виде отсутствует функция у
Простейшее уравнение данного типа в общем виде выглядит так: F(x, y’, y»)=0 .
В этом уравнении всё есть, а «игрека» нет. Точнее, его нет в явном виде , но он обязательно всплывёт в ходе решения. Кроме того, во всех этих уравнениях обязательно присутствует независимая переменная «икс».
Решаются такие уравнения с помощью замены.
Решить неполное дифференциальное уравнение второго порядка: y’’= 5x — 1
Пусть у’ = u , тогда y’’ = u’ , получим u’ = 5x – 1 или
Подставляя обратно в уравнение у’ = u получим:
На заключительном этапе нарисовался партизан «игрек», который, как мы помним, в дифференциальное уравнение в явном виде не входил.
Ответ: Общее решение:
3) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
Дифференциальное уравнение вида: у’’+рy’+qy = f(x)
где коэффициенты p , q – постоянные, называется линейным дифференциальным уравнением второго порядка с постоянными коэффициентами
В теории и практике различают два типа таких уравнений – однородное равнение и неоднородное уравнение .
Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
у’’+рy’+qy = 0 , где p и q – константы (числа), а в правой части – строго ноль.
Неоднородное ДУ второго порядка с постоянными коэффициентами имеет вид:
у’’+рy’+qy = f(x) , где p и q – константы, а f(x) – функция, зависящая только от «икс» . В простейшем случае функция f(x) может быть числом, отличным от нуля .
Чтобы научиться решать неоднородные уравнения необходимо уметь решать однородные уравнения. По этой причине сначала рассмотрим алгоритм решения линейного однородного уравнения второго порядка:
Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение :
По какому принципу составлено характеристическое уравнение, отчётливо видно:
вместо второй производной записываем ;
вместо первой производной записываем просто «лямбду»;
вместо функции у ничего не записываем.
– это обычное квадратное уравнение , которое предстоит решить.
В зависимости от значений корней характеристического уравнения записываем общее решение ЛОДУ с постоянными коэффициентами в виде:
1) Характеристическое уравнение имеет два различных действительных корня
Если характеристическое уравнение имеет два различных действительных корня , (т.е., если дискриминант ), то общее решение однородного уравнения выглядит так:
В случае если один из корней равен нулю, решение очевидным образом упрощается; пусть, например, , тогда общее решение: .
2) Характеристическое уравнение имеет два кратных действительных корня
Если характеристическое уравнение имеет два кратных (совпавших) действительных корня (дискриминант D=0 ), то общее решение однородного уравнения принимает вид: , где – константы.
Вместо в формуле можно было нарисовать , корни всё равно одинаковы.
Если оба корня равны нулю , то общее решение имеет вид: .
Решить дифференциальное уравнение
Решение: составим и решим характеристическое уравнение:
Вычисляя дискриминант, получаем два кратных действительных корня
Ответ: общее решение:
3) Характеристическое уравнение имеет сопряженные комплексные корни ( Данный случай приведен только для ознакомления. Тему «Комплексные числа мы будем проходить позже» )
Если характеристическое уравнение имеет сопряженные комплексные корни , (дискриминант ), то общее решение однородного уравнения принимает вид:
Примечание: Сопряженные комплексные корни почти всегда записывают кратко следующим образом:
Если получаются чисто мнимые сопряженные комплексные корни: , то общее решение упрощается:
Решить однородное дифференциальное уравнение второго порядка
Решение: Составим и решим характеристическое уравнение:
Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

Лекция по высшей математике»Дифференциальные уравнения второго порядка»(для 26 гр.)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
1) ОСНОВНЫЕ ПОНЯТИЯ
Дифференциальным уравнением второго порядка называется уравнение, содержащее неизвестную (искомую) функцию у(х) , независимую переменную х , первую и вторую производные у’, у» или дифференциалы
Дифференциальное уравнение второго порядка символически можно записать в общем виде следующим образом:
Дифференциальное уравнение второго порядка, разрешенное относительно второй производной, имеет вид:
Решением дифференциального уравнения называется всякая функция, которая обращает его в тождество. Дифференциальное уравнение второго порядка имеет бесчисленное множество решений, которые можно представить в виде функции Эта совокупность решений называется общим решением .
Функция, получающаяся из общего решения при конкретных значениях постоянных С 1 и С 2 , называется частным решением . Частное решение находится при помощи задания начальных условий: у(х=х 0 )=у 0 и у'(х=х 0 )=у 0 ‘ , где х 0 , у 0 , у 0 ‘ – конкретные числа.
Задача отыскания частного решения дифференциального уравнения, удовлетворяющего начальному условию, называется задачей Коши . Практически задачу Коши решают следующим образом: находят общее решение, затем в него подставляют начальные условия, получают систему двух уравнений, определяют произвольные постоянные С 1 и С 2 и подставляют их конкретные значения в общее решение.
2) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО
ПОРЯДКА, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА
Рассмотрим некоторые типы дифференциальных уравнений второго порядка, которые позволяют понизить порядок уравнения и привести его к уравнениям первого порядка.
2.1. Дифференциальное уравнение вида
Правая часть уравнения не содержит у и у’ . Уравнение решается путем последовательного интегрирования. Найдем сначала первую производную (промежуточное общее решение):
Интегрируя еще раз, получим общее решение:
Пример 1. Найти частное решение уравнения при заданных начальных условиях у(х= 0 )= 1 и у'(х= 0 )= 1.
Решение. Последовательно интегрируя, найдем сначала первую производную (промежуточное общее решение):
Интегрируя еще раз, получим общее решение:
Так как мы интегрировали дважды, то получили две произвольные постоянные С 1 и С 2 . Подставляя начальные условия в соотношения (2.1) и (2.2), получим С 1 =1 и С 2 =1. Следовательно, частное решение имеет вид:
2.2. Дифференциальное уравнение вида
Правая часть уравнения не содержит искомой функции у . Уравнение решается с помощью подстановки:
где z – функция от х . Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка: .
Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:
Разделяя переменные и интегрируя, получим общее решение
Пример 2. Найти общее решение уравнения
Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:
Разделяем переменные: Интегрируем:
Получаем промежуточное общее решение: или
Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными: или
Интегрируя, получим общее решение:
Пример 3. Найти общее решение уравнения
Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:
Уравнение (2.3) является однородным и решается с помощью подстановки:
Подставляя (2.4) в (2.3), получим дифференциальное уравнение с разделяющимися переменными:
Сокращаем на х и разделяем переменные:
Интеграл в левой части равенства (2.5) вычисляем методом замены переменной:
После интегрирования (2.5) получаем промежуточное общее решение:
Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или .
Разделяем переменные и интегрируем: (2.6)
Интеграл, стоящий в правой части, вычисляем с помощью формулы интегрирования по частям:
После интегрирования (2.6) получим общее решение:
Пример 4. Найти общее решение уравнения
Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:
Уравнение (2.7) является линейным неоднородным и решается с помощью подстановки:
Подставляя (2.8) в (2.7), получим:
Квадратную скобку приравняем к нулю и решим полученное уравнение с разделяющимися переменными:
Разделяем переменные и интегрируем: Получаем: или
Функцию подставляем в соотношение (2.9):
Сокращаем на х , разделяем переменные и интегрируем:
Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или
Разделяем переменные и интегрируем:
Интеграл, стоящий в правой части (2.10), вычисляем с помощью формулы интегрирования по частям:
После интегрирования (2.10) получим общее решение:
2.3. Дифференциальное уравнение вида
Правая часть уравнения не содержит независимой переменной х . Уравнение решается с помощью подстановки: или
где z – функция от у , т.е. z = z [ y ( x )] – сложная функция от х . Тогда :
Исходное уравнение преобразуется в дифференциальное уравнение первого порядка:
где z – искомая функция, у – независимая переменная.
Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:
Разделяя переменные и интегрируя, получим общее решение
Пример 5. Найти общее решение уравнения
Решение. Сделаем подстановку:
Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:
Сокращаем на z ( z ≠0) и разделяем переменные:
Получаем промежуточное общее решение: или
Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными:
Разделяем переменные: Интегрируя, получим общее решение:
3) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
Линейные однородные дифференциальные уравнения.
Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида , (1)
т.е. уравнение, которое содержит искомую функцию и её производные только в первой степени и не содержит их произведений. В этом уравнении и — некоторые числа, а функция задана на некотором интервале .
Если на интервале , то уравнение (1) примет вид , (2)
и называется линейным однородным . В противном случае уравнение (1) называется линейным неоднородным . Рассмотрим комплексную функцию , (3)
где и — действительные функции. Если функция (3) является комплексным решением уравнения (2), то и действительная часть , и мнимая часть решения в отдельности являются решениями этого же однородного уравнения. Таким образом, всякое комплексное решение уравнения (2) порождает два действительных решения этого уравнения.
Решения однородного линейного уравнения обладают свойствами:
Если есть решение уравнения (2), то и функция , где С – произвольная постоянная, также будет решением уравнения (2);
Если и есть решения уравнения (2), то и функция также будет решением уравнения (2);
Если и есть решения уравнения (2), то их линейная комбинация также будет решением уравнения (2), где и – произвольные постоянные.
Функции и называются линейно зависимыми на интервале , если существуют такие числа и , не равные нулю одновременно, что на этом интервале выполняется равенство
Если равенство (4) имеет место только тогда, когда и , то функции и называются линейно независимыми на интервале .
Пример 1 . Функции и линейно зависимы, так как на всей числовой прямой. В этом примере .
Пример 2 . Функции и линейно независимы на любом интервале, т. к. равенство возможно лишь в случае, когда и , и .
Построение общего решения линейного однородного уравнения.
Для того, чтобы найти общее решение уравнения (2), нужно найти два его линейно независимых решения и . Линейная комбинация этих решений , где и – произвольные постоянные, и даст общее решение линейного однородного уравнения. Линейно независимые решения уравнения (2) будем искать
в виде , (5) ,где – некоторое число. Тогда , . Подставим эти выражения в уравнение (2):
Так как , то . Таким образом, функция будет решением уравнения (2), если будет удовлетворять уравнению . (6)
Уравнение (6) называется характеристическим уравнением для уравнения (2). Это уравнение является алгебраическим квадратным уравнением.
Пусть и есть корни этого уравнения. Они могут быть или действительными и различными, или комплексными, или действительными и равными. Рассмотрим эти случаи.
Пусть корни и характеристического уравнения действительные и различны. Тогда решениями уравнения (2) будут функции и . Эти решения линейно независимы, так как равенство может выполняться лишь тогда, когда и , и . Поэтому общее решение уравнения (2) имеет вид , где и — произвольные постоянные.
Пример 3 . Найти общее решение дифференциального уравнения .
Решение . Характеристическим уравнением для данного дифференциального будет . Решив это квадратное уравнение, найдём его корни и . Функции и являются решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .
Комплексным числом называется выражение вида , где и — действительные числа, а называется мнимой единицей. Если , то число называется чисто мнимым. Если же , то число отождествляется с действительным числом .
Число называется действительной частью комплексного числа, а — мнимой частью. Если два комплексных числа отличаются друг от друга только знаком мнимой части, то они зазываются сопряжёнными: ,
Пример 4 . Решить квадратное уравнение .
Решение . Дискриминант уравнения . Тогда . Аналогично, . Таким образом, данное квадратное уравнение имеет сопряжённые комплексные корни.
Пусть корни характеристического уравнения комплексные , т.е. , , где . Решения уравнения (2) можно записать в виде , или , . По формулам Эйлера: , .
Тогда , . Как известно, если комплексная функция является решением лин. одн. ур-я, то решениями этого уравнения являются и действительная, и мнимая части этой функции. Таким образом, решениями уравнения (2) будут функции и . Так как равенство
может выполняться только в том случае, если и , то эти решения линейно независимы. Следовательно, общее решение уравнения (2) имеет вид ,
где и — произвольные постоянные.
Пример 5 . Найти общее решение дифференциального уравнения .
Решение . Уравнение является характеристическим для данного дифференциального. Решим его и получим комплексные корни , . Функции и являются линейно независимыми решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .
Пусть корни характеристического уравнения действительные и равные, т.е. . Тогда решениями уравнения (2) являются функции и . Эти решения линейно независимы, так как выражение может быть тождественно равным нулю только тогда, когда и . Следовательно, общее решение уравнения (2) имеет вид .
Пример 6 . Найти общее решение дифференциального уравнения .
Решение . Характеристическое уравнение имеет равные корни . В этом случае линейно независимыми решениями дифференциального уравнения являются функции и . Общее решение имеет вид .
Неоднородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами и специальной правой частью.
Общее решение линейного неоднородного уравнения (1) равно сумме общего решения соответствующего однородного уравнения и любого частного решения неоднородного уравнения: .
В некоторых случаях частное решение неоднородного уравнения можно найти довольно просто по виду правой части уравнения (1). Рассмотрим случаи, когда это возможно.
Пусть неоднородное уравнение имеет вид , (7)
т.е. правая часть неоднородного уравнения является многочленом степени m . Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде многочлена степени m , т.е. .
Коэффициенты определяются в процессе нахождения частного решения.
Если же является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде .
Пример 7 . Найти общее решение дифференциального уравнения .
Решение . Соответствующим однородным уравнением для данного уравнения является
. Его характеристическое уравнение имеет корни и .
Общее решение однородного уравнения имеет вид .
Так как не является корнем характеристического уравнения, то частное решение неоднородного уравнения будем искать в виде функции . Найдём производные этой функции , и подставим их в данное уравнение :
или . Приравняем коэффициенты при и свободные члены: Решив данную систему , получим , . Тогда частное решение неоднородного уравнения имеет вид , а общим решением данного неоднородного уравнения будет сумма общего решения соответствующего однородного уравнения и частного решения неоднородного:
Пусть неоднородное уравнение имеет вид (8)
Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде . Если же есть корень характеристического уравнения кратности k ( k =1 или k =2), то в этом случае частное решение неоднородного уравнения будет иметь вид .
Пример 8 . Найти общее решение дифференциального уравнения .
Решение . Характеристическое уравнение для соответствующего однородного уравнения имеет вид . Его корни , . В этом случае общее решение соответствующего однородного уравнения записывается в виде .
Так как число 3 не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде . Найдём производные первого и второго порядков: ,. Подставим в дифференциальное уравнение: +,
Приравняем коэффициенты при и свободные члены:
Тогда частное решение данного уравнения имеет вид , а общее решение
💥 Видео
Математика без Ху!ни. Линейные неоднородные дифференциальные уравнения 2 порядка.Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

Неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами МЕТОДОМ ЛАПЛАСАСкачать

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение 2 способаСкачать

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

Пример 66. Решить дифференциальное уравнение 2 порядкаСкачать

19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

18. Линейные неоднородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. часть 3Скачать

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать








