Множество — это совокупность любых объектов. Множества обозначают большими буквами латинского алфавита — от A до Z.
Основные числовые множества: множество натуральных чисел и множество целых чисел, всегда обозначаются одними и теми же буквами:
N — множество натуральных чисел,
Z — множество целых чисел.
Элемент множества — это любой объект, входящий в состав множества. Принадлежность объекта к множеству обозначается с помощью знака ∈ . Запись
читается так: 5 принадлежит множеству Z или 5 – элемент множества Z .
Множества делятся на конечные и бесконечные. Конечное множество — множество, содержащее определённое (конечное) количество элементов. Бесконечное множество — множество, содержащее бесконечно много элементов. К бесконечным множествам можно отнести множества натуральных и целых чисел.
Для определения множества используются фигурные скобки, в которых через запятую перечисляются элементы. Например, запись
означает, что множество L состоит из четырёх чётных чисел.
Термин множество употребляется независимо от того, сколько элементов оно содержит. Множества не содержащие ни одного элемента называются пустыми.
Видео:Подмножество. 5 класс.Скачать
Подмножество
Подмножество — это множество, все элементы которого, являются частью другого множества.
Визуально продемонстрировать отношение множества и входящего в него подмножества можно с помощью кругов Эйлера. Круги Эйлера — это геометрические схемы, помогающие визуализировать отношения различных объектов, в нашем случае, множеств.
Рассмотрим два множества:
Каждый элемент множества L принадлежит и множеству M, значит, множество L является подмножеством множества M. Такое соотношение множеств обозначают знаком ⊂ :
Запись L⊂M читается так: множество L является подмножеством множества M .
Множества, состоящие из одних и тех же элементов, независимо от их порядка, называются равными и обозначаются знаком = .
Рассмотрим два множества:
Так как оба множества состоят из одних и тех же элементов, то L = M.
Видео:Подмножество. Операции над множествами (пересечение, объединение множеств) – 8 класс алгебраСкачать
Пересечение и объединение множеств
Пересечение двух множеств — это совокупность элементов, принадлежащих каждому из этих множеств, то есть их общая часть. Пересечение обозначается знаком ∩ .
Запись L∩M читается так: пересечение множеств L и M .
Из данного примера следует, что пересечением множеств называется множество, которое содержит только те элементы, которые встречаются во всех пересекающихся множествах.
Объединением двух множеств называется множество, содержащее все элементы исходных множеств в единственном экземпляре, то есть если один и тот же элемент встречается в обоих множествах, то в новое множество этот элемент будет включён только один раз. Объединение обозначается знаком ∪ .
Запись L∪M читается так: объединение множеств L и M .
При объединении равных множеств объединение будет равно любому из данных множеств:
Видео:Выписать подмножества множестваСкачать
Множество и его элементы. Подмножества
Понятие множества
Что такое «множество», мы понимаем интуитивно. В этом смысле это понятие первично, так же как «точка» или «плоскость».
Создатель теории множеств Г.Кантор описывал множество как «многое, мыслимое нами как единое».
Приведём примеры множеств:
Множество людей в салоне самолёта
Множество деревьев в парке
Множество планет Солнечной системы
Множество электронов в атоме
Множество натуральных чисел
Множество «синих-синих презелёных красных шаров»
Конечное, бесконечное и пустое множества
Людей в салоне самолёта легко посчитать, это множество конечно.
С деревьями в парке, планетами и электронами – сложней. Скорее всего, мы не сможем назвать точное количество элементов этих множеств в данный момент времени. Однако, и эти множества конечны.
Натуральное число – это идеальный объект, абстракция. Множество натуральных чисел бесконечно. Как оказалось, человек может оперировать и абстракциями, и бесконечностями.
Можно себе представить даже то, «чего на свете вообще не может быть». Поскольку таких объектов нет, их множество будет пустым. Пустое множество является частью любого другого множества.
Помидоры на грядке
Числа (натуральные, рациональные, действительные и т.д.)
Количество рациональных чисел на отрезке [0;1]
Полосатые летающие слоны
Все точки пересечения двух параллельных прямых на плоскости
Способы задания множеств
1) Перечисление – в списке задаются все элементы множества.
Множество всех континентов Земли:
Множество букв слова «математика»:
Множество натуральных чисел меньших 5:
2) Характеристическое свойство – указывается особенность элементов множества.
A = $$ — множество всех действительных положительных x
B = $$ — множество всех натуральных n, кратных 5
C = $$ – множество всех действительных точек координатной плоскости (x,y), расстояние от которых до начала координат не больше 1 (круг с центром в начале координат, радиусом 1).
D = – множество всех материков планеты Земля
3) Графическое изображение – визуальное моделирование с помощью различных диаграмм (круги Эйлера, интервалы, графики и т.п.)
Подмножества
Множество A называют подмножеством множества B (A $subseteq$ B), если всякий элемент множества A также является элементом множества B:
$$ A subseteq B iff (a in Bbb A Rightarrow a in Bbb B) $$
Говорят, что B содержит A, или B покрывает A.
Пустое множество является подмножеством любого множества.
Знак $subseteq$ является аналогом $ge$, т.е. «нестрогим» неравенством. Это значит, что множества A и B могут и совпадать (любое множество является подмножеством самого себя).
Между множествами можно также ввести отношение «строгое подмножество», $A subset B$, в котором B заведомо «шире» множества A (аналог строгого неравенства $lt$).
Множество людей является подмножеством приматов, живущих на Земле.
Множество натуральных чисел меньших 5 является подмножеством натуральных чисел меньших $10: A = , B = , A subseteq B$
Множество квадратов является подмножеством прямоугольников.
Множество полосатых летающих слонов – как пустое множество — является подмножеством чего угодно: приматов, чисел, прямоугольников. Что удобно для размышлений о смысле всего.
Множество всех подмножеств данного множества A называют булеаном или степенью множества A.
Булеан конечного множества из n элементов содержит $2^n$ элементов:
Примеры
Пример 1. Запишите данное множество с помощью перечисления элементов:
Задано множество целых чисел, квадрат которых меньше 5. Перечисляем:
Задано множество целых чисел, модуль которых не больше 3. Перечисляем:
Задано множество рациональных чисел, являющихся корнями уравнения
(x-1)(2x+5) = 0. Перечисляем:
Задано множество натуральных чисел, входящих в полуинтервал $9 lt n le 12$.
Пример 2. Запишите данное множество с помощью характеристического свойства:
а) Множество всех натуральных чисел меньше 10
б) Множество всех действительных чисел, кроме 0
в) Множество всех точек с целыми координатами, принадлежащих прямой y = 2x+1
г) Множество всех целых решений уравнения $x^3+x^2+4 = 0$
Пример 3. Изобразите на графике в координатной плоскости данное множество:
Задано конечное множество точек, которое можно представить перечислением:
Задано бесконечное множество точек, принадлежащих данной гиперболе $y = frac$ в данном интервале $-4 le x le -1$. На графике:
Пример 4. Укажите и запишите с помощью перечисления одно из непустых конечных подмножеств для данного множества:
Видео:9 класс, 2 урок, Множества и операции над нимиСкачать
Решение некоторых задач по теории множеств
Разделы: Математика
На математическом кружке вместе с учащимися рассматривался ряд задач, благодаря наглядности которых, процесс решения становится понятным и интересным. На первый взгляд им хочется составить систему уравнений, но в процессе решения остается много неизвестных, что ставит их в тупик. Для того, чтобы уметь решать эти задачи, необходимо предварительно рассмотреть некоторые теоретические разделы теории множеств.
Введем определение множества, а так же некоторые обозначения.
Под множеством мы будем понимать такой набор, группу, коллекцию элементов, обладающих каким-либо общим для них всех свойством или признаком.
Множества обозначим А, В, С…, а элементы множеств а, b, с…, используя латинский алфавит.
Можно сделать такую запись определения множества:
, где
“” – принадлежит;
“=>“ – следовательно;
“ø” – пустое множество, т.е. не содержащее ни одного элемента.
Два множества будем называть равными, если они состоят из одних и тех же элементов
Если любой элемент из множества А принадлежит и множеству В, то говорят, что множество А включено в множество В, или множество А является подмножеством множества В, или А является частью В, т.е. если , то , где “С” знак подмножества или включения.
Графически это выглядит так (рис.1):
Можно дать другое определение равных множеств. Два множества называются равными, если они являются взаимными подмножествами.
Рассмотрим операции над множествами и их графическую иллюстрацию (рис.2).
Объединением множеств А и В называется множество С, образованное всеми элементами, которые принадлежат хотя бы одному из множеств А или В. Слова “или ” ключевое в понимании элементов входящих в объединение множеств.
Это определение можно записать с помощью обозначений:
А υ В, где
где “ υ ” – знак объединения,
“ / ” – заменяет слова ”таких что“
Пресечение двух множеств А и В называется множество С, образованное всеми элементами, которые принадлежат и множеству А, и множеству В. Здесь уже ключевое слово “и”. Запишем коротко:
А ∩ В = С, где
“∩“ – знак пересечения. (рис.3)
Обозначим буквой Е основное или универсальное множество, где A С Е (“”- любо число), т.е. А Е = Е; АЕ =А
Множество всех элементов универсального множества Е, не принадлежащих множеству А называется дополнением множества А до Е и обозначается Ā Е или Ā (рис.4)
Е
Примерами для понимания этих понятий являются свойства:
А Ā=Е Ø = Е Е Ā=Ā
Свойства дополнения имеют свойства двойственности:
АВ = А∩В
АВ = АUВ
Введем еще одно понятие – это мощность множества.
Для конечного множества А через m (A) обозначим число элементов в множестве А.
Из определение следуют свойства:
Для любых конечных множеств справедливы так же утверждения:
m (AB) =m (A) + m (В) – m (А∩В)
m (A∩B) = m (A) + m (В) – m (АВ)
m (ABC) = m (A) + m (В) + m (С)– m (А∩В) — m (А∩С) – m (В∩С) – m (А∩В∩С).
А теперь рассмотрим ряд задач, которые удобно решать, используя графическую иллюстрацию.
Задача №1
В олимпиаде по математике для абитуриентов приняло участие 40 учащихся, им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. По алгебре решили задачу 20 человек, по геометрии – 18 человек, по тригонометрии – 18 человек.
По алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека.
- Сколько учащихся решили все задачи?
- Сколько учащихся решили только две задачи?
- Сколько учащихся решили только одну задачу?
Задача № 2
Первую или вторую контрольные работы по математике успешно написали 33 студента, первую или третью – 31 студент, вторую или третью – 32 студента. Не менее двух контрольных работ выполнили 20 студентов.
Сколько студентов успешно решили только одну контрольную работу?
Задача № 3
В классе 35 учеников. Каждый из них пользуется хотя бы одним из видов городского транспорта: метро, автобусом и троллейбусом. Всеми тремя видами транспорта пользуются 6 учеников, метро и автобусом – 15 учеников, метро и троллейбусом – 13 учеников, троллейбусом и автобусом – 9 учеников.
Сколько учеников пользуются только одним видом транспорта?
Решение задачи № 1
Запишем коротко условие и покажем решение:
- m (Е) = 40
- m (А) = 20
- m (В) = 18
- m (С) = 18
- m (А∩В) = 7
- m (А∩С) = 8
- m (В∩С) = 9
m (АВС) = 3 => m (АВС) = 40 – 3 = 37
Обозначим разбиение универсального множества Е множествами А, В, С (рис.5).
К 1 – множество учеников, решивших только одну задачу по алгебре;
К 2 – множество учеников, решивших только две задачи по алгебре и геометрии;
К 3 – множество учеников, решивших только задачу по геометрии;
К 4 – множество учеников, решивших только две задачи по алгебре и тригонометрии;
К 5 – множество всех учеников, решивших все три задачи;
К 6 – множество всех учеников, решивших только две задачи, по геометрии и тригонометрии;
К 7 – множество всех учеников, решивших только задачу по тригонометрии;
К 8 – множество всех учеников, не решивших ни одной задачи.
Используя свойство мощности множеств и рисунок можно выполнить вычисления:
- m (К 5 ) = m (А∩В∩С)= m (АВС) — m (А) — m (В) — m (С) + m (А∩В) + m (А∩С) + m (В∩С)
- m (К 5 ) = 37-20-18-18+7+8+9=5
- m (К 2 ) = m (А∩В) — m (К 5 ) = 7-5=2
- m (К 4 ) = m (А∩С) — m (К 5 ) = 8-5=3
- m (К 6 ) = m (В∩С) — m (К 5 ) = 9-5=4
- m (К 1 ) = m (А) — m (К 2 ) — m (К 4 ) — m (К 5 ) = 20-2-3-5=10
- m (К 3 ) = m (В) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 18-2-4-5=7
- m (К 7 ) = m (С) — m (К4) — m (К 6 ) — m (К 5 ) = 18-3-4-5 =6
- m (К 2 ) + m (К 4 ) + m (К6) = 2+3+4=9 – число учеников решивших только две задачи;
- m (К 1 ) + m (К 3 ) + m (К 7 ) = 10+7+6=23 – число учеников решивших только одну задачу.
Ответ:
5 учеников решили три задачи;
9 учеников решили только по две задачи;
23 ученика решили только по одной задаче.
С помощью этого метода можно записать решения второй и третьей задачи так:
Решение задачи № 2
- m (АВ) = 33
- m (АС) = 31
- m (ВС) = 32
- m (К 2 ) + m (К 4 ) + m (К 6 ) + m (К 5 ) = 20
Найти m (К 1 ) + m (К 3 ) + m (К 7 )
- m (АUВ) = m (К 1 ) + m (К 2 ) + m (К 3 ) + m (К 4 ) + m (К 5 ) + m (К 6 ) = m (К 1 ) + m (К 3 ) + 20 = 33 =>
- m (К 1 ) + m (К 3 ) = 33 – 20 = 13
- m (АUС) = m (К 1 ) + m (К 4 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) = m (К 1 ) + m (К 7 ) + 20 = 31 =>
- m (К 1 ) + m (К 7 ) = 31 – 20 = 11
- m (ВUС) = m (К 3 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) + m (К 4 ) = m (К 3 ) + m (К 7 ) + 20 = 32 =>
- m (К 3 ) + m (К 7 ) = 32 – 20 = 12
- 2m (К 1 ) + m (К 3 ) + m (К 7 ) = 13+11=24
- 2m (К 1 ) + 12 = 24
- m (К 3 )= 13-6=7
- m (К 7 )=12-7=5
- m (К 1 ) + m (К 3 ) + m (К 7 ) = 6+7+5=18
Ответ:
Только одну контрольную работу решили 18 учеников.
Решение задачи № 3
- m (Е) = 35
- m (А∩В∩С)= m (К 5 ) = 6
- m (А∩В)= 15
- m (А∩С)= 13
- m (В∩С)= 9
Найти m (К1) + m (К3) + m (К 7 )
- m (К 2 ) = m (А∩В) — m (К 5 ) = 15-6=9
- m (К 4 ) = m (А∩С) — m (К 5 ) = 13-6=7
- m (К 6 ) = m (В∩С) — m (К 5 ) = 9-6=3
- m (К 1 ) + m (К 3 ) + m (К 7 ) = m (Е) — m (К 4 ) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 35-7-9-3-6=10
Ответ:
Только одним видом транспорта пользуется 10 учеников.
Литература: А.Х. Шахмейстер «Множества. Функции. Последовательности»
📹 Видео
Множества. Операции над множествами. 10 класс алгебраСкачать
Множества и операции над нимиСкачать
Математика. 3 класс. Множества. ПодмножестваСкачать
Подмножество. Видеоурок по алгебре 9 классСкачать
2.2 Подмножества, универсальное множество | Константин Правдин | ИТМОСкачать
Подмножество множестваСкачать
Операции над множествамиСкачать
Множество. Элементы множества. 5 класс.Скачать
3 класc. Математика. Подмножество. 20.04.2020Скачать
Алгебра 8 класс (Урок№38 - Множества чисел.)Скачать
Алгебра 7 класс. 19 сентября. Числовые промежуткиСкачать
ПОДМНОЖЕСТВА. Операции над множества. §14 алгебра 8 классСкачать
Изучаем математику с нуля / Урок № 18 / Подмножества и надмножестваСкачать
Математика. 3 класс. Множество. Пересечение множеств. Подмножество.Скачать
Математика. 3 класс. Подмножество /16.04.2021/Скачать
Пересечение множеств. Объединение множеств. 5 класс.Скачать