Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Задание №970

Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

Условие

Найдите все значения параметра a , при каждом из которых уравнение x^+ax+4=sqrt<20x^+8ax+16> имеет ровно три различных корня.

Видео:Найдите все значения а, при каждом из которых система уравнений имеет ровно четыре различных решенияСкачать

Найдите все значения а, при каждом из которых система уравнений имеет ровно четыре различных решения

Решение

Уравнение x^+ax+4=sqrt<20x^+8ax+16> при x^+ax+4 не имеет корней. При x^+ax+4 geq 0 (1) можно обе части уравнения возвести в квадрат.

Чтобы исходное уравнение имело три различных корня, необходимо выполнение условия (1) для чисел x_, x_, x_ и выполнение условия, что эти числа различны.

x_ neq0 и x_ neq 0 , если a neq sqrt=2sqrt и a neq -sqrt=-2sqrt.

Обозначим g(x)=x^+ax+4, . g(x_)=g(0)=4 > 0.

Числа x_=-a+sqrt и x_=-a-sqrt будут корнями исходного уравнения, если выполняются условия:

begin g(x_) geq 0, \ g(x_) geq 0;end

begin -asqrt+16 geq 0, \ asqrt+16 geq 0; end

Таким образом, a in left [ -frac<sqrt>; -2sqrtright ) cup (-2sqrt; 2sqrt) cup left (2sqrt; frac <sqrt> right ].

Видео:Найдите все значения параметра a, при каждом из которых уравнение имеет ровно два различных корняСкачать

Найдите все значения параметра a, при каждом из которых уравнение имеет ровно два различных корня

Ответ

left[-frac<sqrt>; -2sqrtright ) cup (-2sqrt; 2sqrt) cup left (2sqrt; frac<sqrt>right ]

Видео:РАЗБОР СЛОЖНОГО ЗАДАНИЯ 18, ПАРАМЕТР. ЕГЭ МАТЕМАТИКА с Артуром ШарифовымСкачать

РАЗБОР СЛОЖНОГО ЗАДАНИЯ 18, ПАРАМЕТР. ЕГЭ МАТЕМАТИКА с Артуром Шарифовым

Решение задачи с параметрами.

Видео:Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математикеСкачать

Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математике

Задача Профильного Уровня на параметры

Эта задача была на экзамене 2016 года в основной период ЕГЭ по математике. Многие ребята тогда писали, что задания по математике профильного уровня были чрезмерно сложными, и даже создали петицию на сайте OnlinePetition.ru

Ребята, прикол в том, что они были проще многих из тех образцов, по которым вы готовились. Просто непривычнее. Дело в том, что в последнее время на ЕГЭ давались задачи на параметры, которые лучше было решать графическим методом. А 6 июня 2016 года были задачи, в которых достаточно было проанализировать ОДЗ (Область Допустимых Значений) уравнения и его Дискриминант, так как после преобразований уравнение оказывалось квадратным (!).

Давайте рассмотрим решения двух примеров.

Найдите все значения параметра a, при каждом из которых уравнение

√15x 2 + 6ax + 9 ____________ = x 2 + ax + 3

имеет ровно три различных решения.

Решение.

Не забываем начать решение уравнения с анализа его области определения.
Область определения уравнения (системы уравнений, неравенства, функции) совпадает с Областью Допустимых Значений выражения, если условием задачи никаких специальных ограничений не накладывается. Здесь просто ОДЗ:
1) 15x 2 + 6ax + 9 ≥ 0 ;
2) x 2 + ax + 3 ≥ 0 .
Оба неравенства должны выполняться одновременно, т.е. фактически это система неравенств.
Первое условие означает, что подкоренное выражение для корней чётной степени обязано быть неотрицательным.
Второе условие связано с определением арифметического корня. Согласно этому определению результат вычисления квадратного корня есть неотрицательное число, поэтому правая часть равенства также должна быть неотрицательной.
Оба неравенства являются квадратными, но решать мы их будем позже. А пока, заручившись неотрицательностью обеих частей равенства, смело возводим обе части уравнения в квадрат, чтобы избавиться от знака радикала.

Сумма трёх членов возводится в квадрат по правилу — все три квадрата и все три удвоенных произведения, т.е.
(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ac.
Но если вы этого не знаете, не страшно. Скобки-то умеете и ставить, и раскрывать.
(a + (b + c)) 2 = a 2 + 2a(b + c) + (b + c) 2 и далее.

Любым способом после возведения в квадрат получим

Преобразуем: переносим все слагаемые в правую часть, приводим подобные члены, общий множитель выносим за скобки. Имеем:

Очевидно, что x = 0 будет корнем этого уравнения при любом значении параметра a. Проверим ОДЗ при x = 0.

1) 15·0 2 + 6a·0 + 9 ≥ 0; 9 ≥ 0 ;
2) 0 2 + a·0 + 3 ≥ 0; 3 ≥ 0.

Оба неравенства выполняются также при любом значении параметра a. Значит один корень уже есть и теперь нам осталось найти все значения параметра a, при каждом из которых квадратное уравнение

имеет ровно два различных решения, не совпадающих с x = 0 и удовлетворяющих неравенствам 1) и 2), т.е. первоначальному ОДЗ.
Исследуем дискриминант:

Таким образом, последнее уравнение при любом a имеет два разных корня, которые мы можем найти

Совпадение с первым (нулевым корнем) может быть при −a + 3 = 0; a = 3 и при −a − 3 = 0; a = −3 .

Замечание. Это уравнение проще и быстрее решать не через дискриминант, а выделением полного квадрата.
x 2 + 2ax + a 2 − 9 = 0; (x + a) 2 = 9; x + a = ±3.
Но на таком ответственном мероприятии, как выпускной экзамен, я советую решать двумя способами сразу — для взаимной проверки ответов.

Осталось сверить эти корни с Областью Допустимых Значений исходного уравнения.
Проверяем, подставляя поочередно оба корня в оба неравенства.

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корняНайти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корняНайти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Итак, первому неравенству всегда удовлетворяют оба корня. Чтобы оба корня удовлетворяли второму неравенству, нужно чтобы параметр a удовлетворял системе условий Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня, т.е. принадлежал промежутку [−4; 4].

Подводим итоги. Ограничение на параметр даёт только второе условие из ОДЗ: a ∈[−4; 4], а требование о несовпадении корней выполняется, если исключить из этого промежктка a = ±3.

Ответ: a ∈[−4;−3)∪(−3; 3)∪(3; 4]

Как видите, коэффициенты здесь подобраны так, что алгебраические операции не сложны и не занимают много времени. Но, если вы забыли об особенностях квадратных корней и упустили из виду именно условие 2) из ОДЗ, то решения не получите вообще.
Надеюсь, что многие выпускники всё-таки справились с этой задачей, и желаю им дальнейших успехов на экзаменах по выбору.

Найдите все значения а, при каждом из которых уравнение

имеет единственный корень.

Решение.

Начинаем, конечно, с ОДЗ: x ≠ −2 и xa .
Преобразуем:

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Привели дроби к общему знаменателю и сразу отбросили знаменатель. Новое уравнение будет равносильно заданному только с учётом ограничений ОДЗ.

Почему можно так делать?
— Потому что дроби с равными знаменателями равны тогда, когда равны их числители.
Когда нельзя так делать?
— Когда не проверено неравенство знаменателя нулю или забыли предварительно записать ОДЗ.
Кому можно, а кому нельзя так делать?
— Аккуратным и вдумчивым ученикам можно, невнимательным нельзя. Последним надо переносить всё в левую часть равенства, упрощать выражение в виде полной дроби, затем переходить к совокупности условий: «дробь равна нулю, если её числитель равен нулю, а знаменатель не равен нулю».

После раскрытия скобок и приведения подобных членов получим

окончательно приведём к виду, характерному для квадратного уравнения:

Дискриминант этого уравнения

Заданное в условии задачи уравнение может иметь единственное решение в двух случаях. Во-первых, когда дискриминант полученного квадратного уравнения равен нулю, а его единственный корень не совпадает с ограничениями ОДЗ. Иначе его нужно будет отбросить и решений не останется совсем. Во-вторых, когда квадратное уравнение имеет два разных корня (дискриминант больше нуля), но один и только один из них не удовлетворяет ОДЗ.

Случай I. D = 0.

−4a 2 − 4a + 9 = 0 при a = (−1 ± √10 __ )/2.

При этом корень уравнения x = (2a + 1)/2 = a + 0,5 . Очевидно, что при полученных значениях a он не совпадает ни с a, ни с −2.
Таким образом, получены два искомых значения параметра.

Случай II.

Определим те значения a, при которых корнем квадратного уравнения является x = а.

Определим те значения a, при которых корнем квадратного уравнения является x = −2.

При этих значениях параметра а можно продолжить исследование дискриминанта и второго корня квадратного уравнения. Но проще проверить их подстановкой в исходное уравнения условия задачи.

a = 1

x − 2·1 _______ x + 2 + x − 1 ____ x − 1 = 1; x − 2 _____ x + 2 + 1 = 1; x − 2 _____ x + 2 = 0; x = 2.

x − 2·(−1) _________ x + 2 + x − 1 _______ x − (−1) = 1; x + 2 ____ x + 2 + x − 1 ____ x + 1 = 1; 1 + x − 1 ____ x + 1 = 1; x − 1 ____ x + 1 = 0; x = 1.

x − 2·(−2) _________ x + 2 + x − 1 _______ x − (−2) = 1; x + 4 ____ x + 2 + x − 1 ____ x + 2 = 1; x + 4 + x − 1 = x + 2; x = −1.

Таким образом все три значения удовлетворяют условию задачи.

Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.

Видео:Найти все значения параметра а, при каждом из которых уравнение имеет не менее 3 корней.Скачать

Найти все значения параметра а, при каждом из которых уравнение имеет не менее 3 корней.

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Задание С5 (Семенов, Ященко, ЕГЭ по математике 2013)

При каких a уравнение Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корняимеет ровно три корня?

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Задание С5 (Семенов, Ященко, ЕГЭ по математике 2013)

При каких a уравнение Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корняимеет ровно три корня?

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Задание С5 (Ященко, ЕГЭ по математике 2013)

Найти все значения a, при каждом из которых уравнение

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

на промежутке Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корняимеет более двух корней.

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Ответ: Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Задание С5 (Ященко, ЕГЭ по математике 2013)

Найти все значения параметра a, для каждого из которых при любом значении параметра b уравнение Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корняимеет ровно два корня.

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Ответ: Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Задание С5 (Высоцкий, Ященко, ЕГЭ по математике 2013)

Найти все значения a, для каждого из которых уравнение

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

имеет более трех различных решений.

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Ответ: Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Задание С5 (Семенов, Ященко, ЕГЭ по математике 2013)

Найти все a, при каждом из которых уравнение

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

имеет хотя бы одно решение.

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Ответ: Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Задание С5 (Семенов, Ященко, ЕГЭ по математике 2013)

Найдите все значения параметра a , при каждом из которых система уравнений

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

имеет ровно четыре решения.

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Задача 18 ЕГЭ-2021 по математике. Параметры

Посмотрите на условия задач с параметрами ЕГЭ-2021. Вы заметите, что на вид все они похожи. Однако сходство только внешнее, и решаются они по-разному. В этой статье – обзор задач с параметрами ЕГЭ-2021 по математике.

1. Начнем с задачи, которую лучше всего решить аналитическим способом. Слева в уравнении модуль, справа – произведение модуля и корня квадратного. Лучше всего первым действием сделать возведение обеих частей уравнения в квадрат (при неотрицательности подкоренного выражения).

О том, как решать уравнения, где слева модуль и справа модуль, читайте здесь: Уравнения с модулем.

При каких значениях параметра a уравнение

имеет ровно 2 решения?

Уравнение равносильно системе:

Вынесли общий множитель за скобку

Так как и при всех исходное уравнение имеет корни и при всех Значит, исходное уравнение имеет ровно два корня в следующих случаях:

не имеет решений и

2) совпадение корней

Рассмотрим первый случай.

Неравенство — не имеет решений, если

Рассмотрим второй случай.

1) Корни и совпадают, тогда и

Так как исходное уравнение при имеет один корень

2) Корни и совпадают.

Уравнение имеет корни и

3) Корни и совпадают, исходное уравнение имеет ровно два корня.

Мы применили аналитический способ решения: с помощью равносильных переходов от исходного уравнения перешли к такой форме, где сразу видно, какие корни имеет уравнение при определенных значениях параметра.

На Онлайн-курсе подготовки к ЕГЭ на 100 баллов мы подробно рассказывали об этом методе и решали множество задач. Способ хорош тем, что вы просто действуете по образцу – и быстро приходите к ответу.

2. Второе уравнение очень похоже на первое. И первое действие будет таким же: возведением обеих частей в квадрат. А закончим мы – для разнообразия – построением графиков в системе координат (а; х).

Найти a, при которых имеет ровно 2 решения.

Возведем обе части уравнения в квадрат.

Найдем, каким значениям параметра соответствует ровно два значения

Построим в системе координат графики функций:

Мы находим такие при которых горизонтальная прямая имеет ровно 2 общие точки с совокупностью прямых, являющихся графиком исходного уравнения.

Видим, что в общем случае прямая пересекает каждую из трех прямых, то есть исходное уравнение имеет ровно 3 решения.
Ровно 2 решения будет в случаях, когда прямая проходит через точки пересечения прямых, то есть в случаях совпадения корней.

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Данная совокупность имеет ровно два решения в случаях совпадения корней.

О графическом способе решения задач с параметрами читайте здесь: Графический метод решения задач с параметрами.

3. В третьем задании также присутствуют выражения под модулями. Но подход будет другой: мы применим метод интервалов для модулей, о котором можно прочитать здесь: Уравнения с модулем.

С его помощью раскроем модули и получим график функции, заданной описанием: на разных интервалах график этой функции выглядит по-разному, то есть состоит из отдельных кусочков. А дальше – графическое решение.

Найдите все значения a, при каждом из которых уравнение

имеет ровно два различных корня.

Применим метод интервалов для модулей. Уравнение равносильно совокупности систем:

Мы сделали так, потому что при оба модуля раскрываем с противоположным знаком:

Заметим, что если уравнение не выполняется ни при каких

Решим графически полученную совокупность.

Рассмотрим функцию такую, что:

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Для функции ось ординат – вертикальная асимптота.

Уравнение имеет ровно два корня при или

Вообще задачи с параметрами, как правило, можно решать многими способами.

4. И наконец, довольно сложное уравнение с тремя модулями. Нам придется раскрывать все эти модули по определению, рассматривая 4 случая. Но ничего страшного здесь нет – просто аккуратность. А потом мы разобьем координатную плоскость (х; а) на области и в каждой из областей построим график уравнения. Кто знаком с методом областей – тот легко с этим справится.

При каких значениях параметра a уравнение имеет ровно три различных решения

2) Пусть тогда Получим:

Изобразим полученную совокупность условий в координатах

Получим области I — IV, соответствующие

Получили график уравнения.

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Уравнение имеет ровно 3 решения, если значение a соответствует одной из точек пересечения прямых: точка A, B, С или D. В остальных случаях уравнение имеет ровно 4 решения.

5. (Резервный день) Найти все значения параметра при каждом из которых уравнение

имеет хотя бы два различных корня.

Исходное уравнение имеет хотя бы два различных корня, если уравнение

имеет хотя бы один корень

Если t = 0, то x = 0, тогда

Этот случай рассмотрим отдельно.

1) Случай уравнение

должно иметь хотя бы один положительный корень.

Если уравнение линейное, тогда

Пусть уравнение квадратное.

При этом должно выполняться условие

Решим третье неравенство системы:

возведем обе части в квадрат:

Найти все значение параметра а при каждом из которых уравнение имеет ровно три различных корня

Объединив со случаем a = 2, получим:

Вернемся к случаю, когда – корень уравнения. Тогда Получим уравнение:

– уравнение имеет, кроме корня положительный корень подходит

Вот так в задачах ЕГЭ-2021 по математике можно применить в задачах с параметрами аналитический и графический способы, а также метод областей.

Конечно, это не все. Существует не менее 12 методов решения задач с параметрами. Мы изучаем их все на практике на Онлайн-курсе подготовки к ЕГЭ по математике.

💥 Видео

5-часовой стрим по ПАРАМЕТРАМ. Вся алгебра для №17 с нуля и до уровня ЕГЭ 2023Скачать

5-часовой стрим по ПАРАМЕТРАМ. Вся алгебра для №17 с нуля и до уровня ЕГЭ 2023

Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать

Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnline

Найдите все значения a, при каждом из которых система уравнений имеет ровно два различных решения.Скачать

Найдите все значения a, при каждом из которых система уравнений имеет ровно два различных решения.

Хороший ПАРАМЕТР ★ Задание 18 ЕГЭ профиль #56Скачать

Хороший ПАРАМЕТР ★ Задание 18 ЕГЭ профиль #56

САМОЕ СЛОЖНОЕ ЗАДАНИЕ 18. ЕГЭ МАТЕМАТИКА, ПАРАМЕТР. АРТУР ШАРИФОВСкачать

САМОЕ СЛОЖНОЕ ЗАДАНИЕ 18. ЕГЭ МАТЕМАТИКА, ПАРАМЕТР. АРТУР ШАРИФОВ

Задание 18. ЕГЭ математика 2024. Разбор за 2 часа всех типов. Параметры ЕГЭ. Решение параметров.Скачать

Задание 18. ЕГЭ математика 2024. Разбор за 2 часа всех типов. Параметры ЕГЭ. Решение параметров.

Найдите все значения а, при каждом из которых уравнение имеет хотя бы один кореньСкачать

Найдите все значения а, при каждом из которых уравнение имеет хотя бы один корень

#97. ОЧЕНЬ КРАСИВАЯ ЗАДАЧА С ПАРАМЕТРОМ!Скачать

#97. ОЧЕНЬ КРАСИВАЯ ЗАДАЧА С ПАРАМЕТРОМ!

Параметры, Легко Решаемые Графически | ЕГЭ 2024 по математикеСкачать

Параметры, Легко Решаемые Графически | ЕГЭ 2024 по математике

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

Найдём все значения а при каждом из которых уравнение на промежутке имеет ровно два корняСкачать

Найдём все значения а при каждом из которых уравнение на промежутке имеет ровно два корня

Полуокружность и прямые | Восемь решений уравнения | Параметр 4 | mathus.ruСкачать

Полуокружность и прямые | Восемь решений уравнения | Параметр 4 | mathus.ru

Найдите все значения параметра а, при которых система имеет единственное решениеСкачать

Найдите все значения параметра а, при которых система имеет единственное решение
Поделиться или сохранить к себе: