Найти все комплексные корни уравнения

Решение уравнений с комплексными числами

Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.

Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:

Найти все комплексные корни уравнения
где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = .

Пример 1. Найти все корни уравнения

Найти все комплексные корни уравнения

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа

Найти все комплексные корни уравнения

Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:

Найти все комплексные корни уравненияНайти все комплексные корни уравнения
Подставим найденные значения в формулу:

Найти все комплексные корни уравнения

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.

Найти все комплексные корни уравнения

Пример 2. Найти все корни уравнения

Найти все комплексные корни уравнения

Найдем дискриминант уравнения:

Найти все комплексные корни уравнения
Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:

Найти все комплексные корни уравнения

Найдем корни уравнения:

Найти все комплексные корни уравнения
Ответ:

Найти все комплексные корни уравнения

Пример 3. Найти все корни уравнения

Найти все комплексные корни уравнения

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа

Найти все комплексные корни уравнения

Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = . Найдем модуль комплексного числа:

Найти все комплексные корни уравнения

Подставим найденные значения в формулу:

Найти все комплексные корни уравнения

Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:

Найти все комплексные корни уравнения

Найти все комплексные корни уравнения

Пример 4. Найти корни уравнения

Найти все комплексные корни уравнения
Решение кубического уравнения комплексными числами:

Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.

Найдем все необходимые значения для формулы:

Найти все комплексные корни уравнения
Подставим найденные значения в формулу:

Найти все комплексные корни уравнения

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:

Найти все комплексные корни уравнения

Найти все комплексные корни уравнения

Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.

Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.

После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.

Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.

Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.

Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.

Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.

Видео:Комплексные корни квадратных уравнений. 11 класс.Скачать

Комплексные корни квадратных уравнений. 11 класс.

Найти все комплексные корни уравнения

. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку «решить»), нажимаете кнопку под формой «Обновить» и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке

Найти все комплексные корни уравнения

© Контрольная работа РУ — примеры решения задач

Видео:Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.Скачать

Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.

Комплексные числа по-шагам

Видео:Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения

Результат

Примеры комплексных выражений

  • Деление комплексных чисел
  • Умножение комплексных чисел
  • Комплексные уравнения
  • Возведение комплексного числа в степень
  • Корень из комплексного числа

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

🎦 Видео

Найдите все значения корня из комплексного числа ∛-125i ★ Извлечение корня из комплексного числаСкачать

Найдите все значения корня из комплексного числа ∛-125i ★ Извлечение корня из комплексного числа

Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Извлечение квадратного корня из комплексного числа. 11 класс.Скачать

Извлечение квадратного корня из комплексного числа. 11 класс.

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Биквадратное уравнение. Комплексные корни.Скачать

Биквадратное уравнение. Комплексные корни.

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать

Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.

Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

Как найти корни уравнения в Excel с помощью Подбора параметра

11 класс, 10 урок, Извлечение корней из комплексных чиселСкачать

11 класс, 10 урок, Извлечение корней из комплексных чисел

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Извлечение корня из комплексного числаСкачать

Извлечение корня из комплексного числа

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.

10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать

10 класс, 35 урок, Комплексные числа и квадратные уравнения

Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

Как решать квадратные уравнения. 8 класс. Вебинар | Математика

Изобразить область на комплексной плоскостиСкачать

Изобразить область на комплексной плоскости
Поделиться или сохранить к себе: