Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Видео:ОртогональностьСкачать

Ортогональность

Ортогональное дополнение. Ортогональная проекция вектора на подпространство

Пусть Е — евклидово пространство, а L — его подпространство. Множество L 1 — векторов в Е, ортогональных к каждому вектору подпространства L, называют ортогональным дополнением к подпространству L.

Теорема 8.6. Ортогональное дополнение IA к подпространству L евклидова пространства Е является подпространством в Е.

> Пусть уi,y2 € ZA. Тогда для любого вектора х ? L имеем: (ж, г/1) = 0 и (х,у2) = 0. Следовательно,

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

т.е. вектор у + у2 ортогонален любому вектору х € L. Это означает, что У12 € ZA. Мы доказали, что сумма любых двух векторов множества ZA принадлежит ZA. Аналогично для любого действительного числа Л и любого хL имеем:

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

т.е. вектор Л у ортогонален любому вектору х е L, а значит, принадлежит ZA. Таким образом, множество ZA замкнуто относительно сложения векторов и умножения векторов на числа и, следовательно, является подпространством. ?

Теорема 8.7. Конечномерное евклидово пространство Е является прямой суммой любого своего подпространства L и его ортогонального дополнения ZA, т.е. ортогональное дополнение к подпространству является его прямым дополнением.

> Пусть в пространстве L выбран ортогональный базис, состоящий из векторов ai, 02, . а&. Дополним его до ортогонального базиса пространства Е векторами fk+i, fk+2, •••, fn и по построенному базису

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

разложим произвольный вектор х из Е. Тогда получим Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравненийгде положено

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Вектор у принадлежит подпространству Z, поскольку он является линейной комбинацией векторов базиса в L. Покажем, что вектор z принадлежит ортогональному дополнению LА Для этого замечаем, что по построению векторы fk+i, fk+2, fn ортогональны базисным

векторам ai, Это очевидное следствие теоремы о размерности суммы подпространств (см. теорему 4.23). ?

Следствие 8.3. Ортогональным дополнением к подпространству ZA является подпространство L.

> Так как каждый вектор из L ортогонален каждому вектору из ZA, то подпространство L содержится в (ZA)A Кроме того, выполняются соотношения Е = L 0 ZA, Е = (L— L )- L ф ZA, и по предыдущему следствию подпространства L и (ZA) 1 — имеют одинаковую размерность. Поэтому эти подпространства совпадают. ?

Следствие 8.4. Если L — подпространство в евклидовом пространстве Е, то любой вектор хЕ имеет разложение

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

где хо G L, х 1 — G /А. Такое разложение единственно.

> Это утверждение — фактически расшифровка утверждения, что Е = L Ф ZA. ?

Пример 8.9. В четырехмерном пространстве Е± скалярное произведение в заданном базисе определено формулой (8.5). Построить ортогональное дополнение ZA для подпространства L = (а^аг), где a, = (1,1,1, l) r , а2 = (1, -1,1,1) т .

Решение. Векторы а и а2 составляют базис в L. Дополним эту систему до базиса в Е± векторами Ъ и 62, удовлетворяющими условиям Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

и положим L = (61,62)- Векторы 61, 62 являются решениями системы из двух уравнений (ai,x) = 0, (а,2,х) = 0, и в качестве их можно взять любую фундаментальную систему решений, например, 61 = (—1,0,1,0) т , 62 = (—1,0,0,1) т . Из выбора векторов 61 и 62 следует, что они составляют базис в L L , т.е. L = L L . ?

Пусть L — подпространство евклидова пространства Е. Каждый вектор у ? Е может быть единственным способом представлен в виде

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

где уо ? L, а вектор у 1 — ортогонален к каждому вектору из L, т.е. у 1 — ? L х . Вектор уо называют ортогональной проекцией вектора у на пространство L и обозначают прьУ, а вектор y L называют ортогональной составляющей вектора у. Очевидно, что если у ? L, то прьу = у, и, наоборот, если прьу = : Действительно, пусть у — произвольный вектор, опущенный из конца вектора х на подпространство L и х 1 — — ортогональная составляющая вектора х, т.е. перпендикуляр, опущенный из конца вектора х на подпространство L. Тогда

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

поскольку концы векторов у их 1 лежат в L. Поэтому

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

так как векторы у — х 1 — их 1 ортогональны. ?

Доказанные утверждения является естественным обобщением известного из элементарной геометрии утверждения о том, что перпендикуляр короче любой наклонной, опущенной из той же точки на плоскость.

Длину ортогональной составляющей х 1 — вектора х принимают за кратчайшее расстояние от вектора х до подпространства L.

Ортогональная проекция вектора у на подпространство L является частным случаем проекции вектора на подпространство параллельно подпространству L2, являющемуся прямым дополнением к L (см. разд. 4.11). В случае ортогональной проекции Ь2 = Ь 1 .

На практике при отыскании ортогональной проекции вектора х на подпространство L = (ai, а2, •••?> &fc) поступают следующим образом. В разложении

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

вектора х на ортогональную проекцию жо = npLT и ортогональную составляющую х 1 — вектор Xq можно представить в виде линейной комбинации Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Тогда равенство х = Хо + х 1 принимает вид:

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Для отыскания коэффициентов oi, 02, . о& умножим равенство (8.16) скалярно на векторы а, а2, . ак- Учитывая, что (а^аг 1- ) = = 2,х ± ) = . = (ак,х?*?) = 0, получаем систему линейных уравнений

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

относительно неизвестных оц, а2, . а к. Из этой системы находят коэффициенты oi, а2, . о^. В матричной форме равенство (8.15) и система (8.17) записываются в виде

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

где А = (oi, а2. а*,) — матрица, для которой столбцами являются столбцы координат векторов а, а2, . а&; о (01,02, . о*;) т — столбец высоты к. Использование системы (8.17), или, что тоже самое системы (8.19), указывает на то (см. п.8.21), что отыскание коэффициентов ai, а2, . ак для равенства (8.15) равносильно решению методом наименьших квадратов системы А о = х с неизвестным столбцом

Если система векторов oi, 2, • ••, ftfc линейно независимая, то в равенстве (8.19) матрица А т А невырожденная, так как она представляет собой матрицу Грама этой системы векторов (см. теорему 8.1). В этом случае из уравнения (8.19) однозначно определяется столбец а: Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Учитывая равенство (8.18), заключаем, что Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Пример 8.10. Для вектора х = (3,6,0) т найти ортогональную проекцию Xq на подпространство L = (а^аг) и ортогональную составляющую т х , если ay = (1, —1,0) т , т .

Решение. Запишем xq = npL.x в виде хд = ау ау + Коэффициенты ау и «2 можно найти, решив систему (8.17), которая в данном случае имеет вид:

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Вычислим все скалярные произведения. В результате получим

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Решая систему относительно неизвестных од иаг, находим, что од = = су2 = 3. Таким образом, пр/,т = Зау + Заг = (0,3,3) т и х^ = = х — npLT = (3,3, —3) т .

Поскольку векторы а у, а2 линейно независимые, то можно также воспользоваться формулой (8.20). Вычислив

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Заметим, что если е = (ei, е2п) — ортоиормированный базис в евклидовом пространстве Е, а подпространство L является линейной оболочкой части базисных векторов, например, L = (ei, е2. е*,), то для любого вектора

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

ортогональная проекция прь-т совпадает с суммой слагаемых в разложении х по базису, соответствующих векторам, порождающим L. а ортогональная проекция — с суммой всех остальных слагаемых, т.е.

Найти уравнение задающее ортогональное дополнение к подпространству заданному системой уравнений

Например, для вектора х = (1,2, 3,4,5) т проекция на подпространство L = (б1,е2,ез) равна Xq = (1,2,3,0,0) т , и его ортогональная составляющая х 1 — = (0,0,0,4, 5) т . ?

Видео:Линейная оболочка. Базис и размерностьСкачать

Линейная оболочка. Базис и размерность

Ортогональные дополнения евклидова пространства

Ортогональным дополнением непустого подмножества [math]M[/math] евклидова пространства [math]mathbb[/math] называется множество векторов, ортогональных каждому вектору из [math]M[/math] . Ортогональное дополнение обозначается

forall mathbfin M Bigr>.[/math]

Рассмотрим примеры ортогональных дополнений евклидова пространства.

1. Ортогональным дополнением нулевого подпространства [math] <mathbf> triangleleft mathbb[/math] служит все пространство [math]mathbb colon, <mathbf>^= mathbb[/math] . Ортогональным дополнением всего пространства является его нулевое подпространство [math]mathbb^= <mathbf>[/math] .

2. Пусть в пространстве [math][/math] радиус-векторов (с началом в точке [math]O[/math] ) за даны три взаимно перпендикулярных радиус-вектора [math]overrightarrow[/math] , [math]overrightarrow[/math] и [math]overrightarrow[/math] . Тогда ортогональным дополнением вектора [math]overrightarrow[/math] является множество радиус- векторов на плоскости, содержащей векторы [math]overrightarrow[/math] и [math]overrightarrow[/math] , точнее, [math]<overrightarrow>^= operatorname(overrightarrow,overrightarrow)[/math] . Ортогональным дополнением векторов [math]overrightarrow[/math] и [math]overrightarrow[/math] служит множество радиус-векторов на прямой, содержащей вектор [math]overrightarrowcolon <overrightarrow,overrightarrow>^= operatorname (overrightarrow)[/math] . Ортогональным дополнение трех заданных векторов служит нулевой радиус-вектор: [math]<overrightarrow, overrightarrow, overrightarrow>^= <overrightarrow>[/math] .

3. В пространстве [math]P_2(mathbb)[/math] многочленов степени не выше второй со скалярным произведением (8.29) задано подмножество [math]P_0(mathbb)[/math] — многочленов нулевой степени. Найдем ортогональное дополнение этого подмножества. Для этого приравняем нулю скалярное произведение многочлена [math]p_2(x)=ax^2+bx+c[/math] на постоянный многочлен [math]p_0(x)=dcolon[/math] [math]langle p_2(x),p_0(x)rangle= acdot0+bcdot0+ccdot d=0[/math] . Поскольку величина [math]d[/math] произвольная, то [math]c=0[/math] . Следовательно, ортогональным дополнением подмножества [math]P_0(mathbb)[/math] является множество многочленов из [math]P_0(mathbb)[/math] с нулевым свободным членом.

Видео:Ортогональное дополнение. ПримерСкачать

Ортогональное дополнение. Пример

Свойства ортогонального дополнения

Рассмотрим свойства ортогональных дополнений подмножеств n-мерного евклидова пространства [math]mathbb[/math] .

1. Ортогональное дополнение [math]M^[/math] непустого подмножества [math]Msubset mathbb[/math] является линейным подпространством, т.е. [math]M^ triangleleft mathbb[/math] , и справедливо включение [math]Msubset (M^)^[/math] .

В самом деле, множество [math]M^[/math] замкнуто по отношению к операциям сложения векторов и умножения вектора на число, так как сумма двух век торов, ортогональных [math]M[/math] , ортогональна [math]M[/math] , и произведение вектора, ортогонального [math]M[/math] , на любое число является вектором, ортогональным [math]M[/math] . До кажем включение [math]Msubset (M^)^[/math] . Пусть [math]mathbfin M[/math] , тогда [math]langle mathbf,mathbfrangle=0[/math] для любого вектора [math]mathbfin M^[/math] . Но это означает, что [math]mathbfsubset (M^)^[/math] .

2. Пересечение любого непустого подмножества [math]Msubset mathbb[/math] со своим ортогональным дополнением есть нулевой вектор: [math]Mcap M^= <mathbf>[/math] .

Действительно, только нулевой вектор ортогонален самому себе.

3. Если [math]L[/math] — подпространство [math]mathbb

(Ltriangleleft mathbb)[/math] , то [math]mathbb=Loplus L^[/math] .

Действительно, возьмем в [math]L[/math] ортогональный базис [math](mathbf)= (mathbf_1, ldots,mathbf_k)[/math] . До полним его векторами [math](mathbf)= (mathbf_,ldots, mathbf_n)[/math] до ортогонального базиса [math](mathbf),,(mathbf)[/math] всего пространства [math]mathbb[/math] . Тогда произвольный вектор [math]mathbfin mathbb[/math] можно представить в виде суммы

где [math]mathbfin L[/math] , а [math]mathbfin L^[/math] , так как [math]langle mathbf,mathbf_irangle= sum_^mathbflangle mathbf_j, mathbf_i rangle_<_>=0[/math] для [math]i=1,ldots,k[/math] . Следовательно, любой вектор пространства [math]mathbb[/math] раскладывается по подпространствам [math]L[/math] и [math]L^[/math] , т.е. [math]mathbb= L+L^[/math] . Эта алгебраическая сумма является прямой суммой по свойству 2, поскольку [math]Lcap L^=<mathbf>[/math] . Следовательно, [math]mathbb=Loplus L^[/math] .

4. Если [math]Ltriangleleft mathbb[/math] , то [math]dim<L^>= dimmathbb-dim[/math] .

5. Если [math]L[/math] — подпространство [math]mathbb[/math] , то [math]L=(L^)^[/math] .

Из первого свойства следует включение [math]Lsubset(L^)^[/math] . Докажем, что [math](L^)^subset L[/math] . Действительно, пусть [math]mathbfin (L^)^[/math] . По свойству 3: [math]mathbf=mathbf+mathbf[/math] , где [math]mathbfin L,

mathbfin L^[/math] . Найдем скалярное произведение

Следовательно, [math]langle mathbf,mathbfrangle=0[/math] , и согласно аксиоме 4 скалярного произведения [math]mathbf=mathbf[/math] , поэтому [math]mathbf=mathbf+ mathbf= mathbf+mathbf=mathbfin L[/math] . Значит, [math](L^)^subset L[/math] . Из двух включений [math]Lsubset (L^)^[/math] и [math](L^)^ subset L[/math] следует равенство [math]L=(L^)^[/math] .

6. Если [math]L_1triangleleft mathbb[/math] и [math]L_2triangleleft mathbb[/math] , то [math](L_1+L_2)^=L_1^cap L_2^[/math] и [math](L_1cap L_2)^= L_1^+ L_2^[/math] .

Последние свойства аналогичны свойствам алгебраических дополнений.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Нахождение ортогонального дополнения подпространства

Ранее для описания подпространств линейных пространств использовались два способа описания (внешний и внутренний). Рассмотрим применение этих способов описания для нахождения ортогональных дополнений подпространств. Учитывая изоморфизм евклидовых пространств, будем рассматривать арифметическое пространство [math]mathbb^n[/math] со скалярным произведением (8.27).

Для заданного подпространства [math]Ltriangleleft mathbb^n[/math] требуется найти его ортогональное дополнение [math]L^[/math] . В зависимости от способа описания подпространства [math]L[/math] используем одно из следующих двух утверждений.

1. Если подпространство [math]Ltriangleleft mathbb^n[/math] задано как линейная оболочка [math]L=operatorname(a_1,ldots,a_k)[/math] столбцов матрицы [math]A= begina_1&cdots&a_kend[/math] , то множество решений однородной системы [math]Ax=o[/math] является его ортогональным дополнением [math]L^triangleleft mathbb^n[/math] , т.е.

2. Если подпространство [math]Ltriangleleft mathbb^n[/math] задано как множество решений однородной системы [math]Ax=o[/math] [math]m[/math] уравнений с [math]n[/math] неизвестными, то линейная оболочка столбцов [math]a_1^T,ldots,a_m^T[/math] транспонированной матрицы [math]A^T=begina_1^T&cdots&a_m^Tend[/math] является его ортогональным дополнением [math]L^triangleleft mathbb^n[/math] , т.е.

где [math]a_i^T[/math] — i-й столбец матрицы [math]A^T[/math] .

Докажем, например, первое утверждение. Линейное однородное уравнение

1. В отличие от алгебраического дополнения [math]L^[/math] подпространстве [math]Ltriangleleft mathbb[/math] ортогональное дополнение [math]L^[/math] находится однозначно.

2. Ортогональное дополнение [math]L^[/math] подпространства [math]Ltriangleleft mathbb[/math] в силу свойства 3 является также и алгебраическим дополнением. Это обстоятельстве учитывалось при нахождении алгебраических дополнений при помощи утверждений (8.16) и (8.17), которые по существу совпадают с утверждениями (8.34) и (8.35).

Пример 8.19. В примере 8.10 для линейного подпространства [math]L= operatorname[(t-1)^2,(t+1)^3][/math] пространства [math]P_3(mathbb)[/math] многочленов не более, чем 3-й степени, было найдено алгебраическое дополнение

Доказать, что это алгебраическое дополнение является ортогональным дополнением подпространства [math]L[/math] евклидова пространства [math]P_3(mathbb)[/math] со скалярным произведением (8.29).

Решение. Для решения задачи достаточно показать, что образующие подпространства [math]L:[/math]

ортогональны образующим алгебраического дополнения [math]L^:[/math]

💡 Видео

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Шишкин А. А. - Линейная алгебра - 3. Система линейных уравнений. Евклидовы и унитарные пространстваСкачать

Шишкин А. А. - Линейная алгебра - 3. Система линейных уравнений. Евклидовы и унитарные пространства

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Лекция №1. Системы линейных уравненийСкачать

Лекция №1. Системы линейных уравнений

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

01.02.2022 Подпространства и системы линейных уравнений, Сумма подпространств.Скачать

01.02.2022 Подпространства и системы линейных уравнений, Сумма подпространств.

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

4.1 Сумма и пересечение подпространств.Скачать

4.1 Сумма и пересечение подпространств.

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Лекция 25. Ортогонализация по Граму-ШмидтуСкачать

Лекция 25. Ортогонализация по Граму-Шмидту

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ
Поделиться или сохранить к себе: