Найти уравнение регрессии y по x статистика

Задача №1 Построение уравнения регрессии

Имеются следующие данные разных стран об индексе розничных цен на продукты питания (х) и об индексе промышленного производства (у).

Индекс розничных цен на продукты питания (х)Индекс промышленного производства (у)
110070
210579
310885
411384
511885
611885
711096
811599
9119100
1011898
1112099
12124102
13129105
14132112

Требуется:

1. Для характеристики зависимости у от х рассчитать параметры следующих функций:

В) равносторонней гиперболы.

2. Для каждой модели рассчитать показатели: тесноты связи и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции.

4. Выполнить прогноз значения индекса промышленного производства у при прогнозном значении индекса розничных цен на продукты питания х=138.

Решение:

1. Для расчёта параметров линейной регрессии

Найти уравнение регрессии y по x статистика

Решаем систему нормальных уравнений относительно a и b:

Найти уравнение регрессии y по x статистика

Построим таблицу расчётных данных, как показано в таблице 1.

Таблица 1 Расчетные данные для оценки линейной регрессии

№ п/пхухуx 2y 2Найти уравнение регрессии y по x статистикаНайти уравнение регрессии y по x статистика
110070700010000490074,263400,060906
210579829511025624179,925270,011712
310885918011664722583,322380,019737
411384949212769705688,984250,059336
5118851003013924722594,646110,113484
6118851003013924722594,646110,113484
7110961056012100921685,587130,108467
8115991138513225980191,249000,078293
911910011900141611000095,778490,042215
10118981156413924960494,646110,034223
11120991188014400980196,910860,021102
12124102126481537610404101,44040,005487
13129105135451664111025107,10220,020021
14132112147841742412544110,49930,013399
Итого:162912991522931905571222671299,0010,701866
Среднее значение:116,357192,7857110878,0713611,218733,357хх
Найти уравнение регрессии y по x статистика8,498811,1431ххххх
Найти уравнение регрессии y по x статистика72,23124,17ххххх

Среднее значение определим по формуле:

Найти уравнение регрессии y по x статистика

Cреднее квадратическое отклонение рассчитаем по формуле:

Найти уравнение регрессии y по x статистика

и занесём полученный результат в таблицу 1.

Возведя в квадрат полученное значение получим дисперсию:

Найти уравнение регрессии y по x статистика

Параметры уравнения можно определить также и по формулам:

Найти уравнение регрессии y по x статистика

Найти уравнение регрессии y по x статистика

Таким образом, уравнение регрессии:

Найти уравнение регрессии y по x статистика

Следовательно, с увеличением индекса розничных цен на продукты питания на 1, индекс промышленного производства увеличивается в среднем на 1,13.

Рассчитаем линейный коэффициент парной корреляции:

Найти уравнение регрессии y по x статистика

Связь прямая, достаточно тесная.

Определим коэффициент детерминации:

Найти уравнение регрессии y по x статистика

Вариация результата на 74,59% объясняется вариацией фактора х.

Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчётные) значения Найти уравнение регрессии y по x статистика.

Найти уравнение регрессии y по x статистика,

следовательно, параметры уравнения определены правильно.

Рассчитаем среднюю ошибку аппроксимации – среднее отклонение расчётных значений от фактических:

Найти уравнение регрессии y по x статистика

В среднем расчётные значения отклоняются от фактических на 5,01%.

Оценку качества уравнения регрессии проведём с помощью F-теста.

F-тест состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера.

Fфакт определяется по формуле:

Найти уравнение регрессии y по x статистика

где n – число единиц совокупности;

m – число параметров при переменных х.

Найти уравнение регрессии y по x статистика

Найти уравнение регрессии y по x статистика

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза.

Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Найти уравнение регрессии y по x статистика

2. Степенная регрессия имеет вид:

Найти уравнение регрессии y по x статистика

Для определения параметров производят логарифмиро­вание степенной функции:

Найти уравнение регрессии y по x статистика

Для определения параметров логарифмической функции строят систему нормальных уравнений по способу наи­меньших квадратов:

Найти уравнение регрессии y по x статистика

Построим таблицу расчётных данных, как показано в таблице 2.

Таблица 2 Расчетные данные для оценки степенной регрессии

№п/пхуlg xlg ylg x*lg y(lg x) 2(lg y) 2
1100702,0000001,8450983,6901964,0000003,404387
2105792,0211891,8976273,8354644,0852063,600989
3108852,0334241,9294193,9233264,1348123,722657
4113842,0530781,9242793,9506964,2151313,702851
5118852,0718821,9294193,9975284,2926953,722657
6118852,0718821,9294193,9975284,2926953,722657
7110962,0413931,9822714,0465944,1672843,929399
8115992,0606981,9956354,1124014,2464763,982560
91191002,0755472,0000004,1510944,3078954,000000
10118982,0718821,9912264,1255854,2926953,964981
11120992,0791811,9956354,1492874,3229953,982560
121241022,0934222,0086004,2048474,3824144,034475
131291052,1105902,0211894,2659014,4545894,085206
141321122,1205742,0492184,3455184,4968344,199295
Итого1629129928,9047427,4990456,7959759,6917254,05467
Среднее значение116,357192,785712,0646241,9642174,0568554,2636943,861048
Найти уравнение регрессии y по x статистика8,498811,14310,0319450,053853ххх
Найти уравнение регрессии y по x статистика72,23124,170,0010210,0029ххх

Продолжение таблицы 2 Расчетные данные для оценки степенной регрессии

№п/пхуНайти уравнение регрессии y по x статистикаНайти уравнение регрессии y по x статистикаНайти уравнение регрессии y по x статистикаНайти уравнение регрессии y по x статистика
11007074,1644817,342920,059493519,1886
21057979,620570,3851120,007855190,0458
31088582,951804,1951330,02409660,61728
41138488,5976821,138660,05473477,1887
51188594,3584087,579610,11009960,61728
61188594,3584087,579610,11009960,61728
71109685,19619116,72230,1125410,33166
81159990,8883465,799010,08193638,6174
911910095,5240820,033840,04475952,04598
101189894,3584013,261270,03715927,18882
111209996,694235,3165630,02329138,6174
12124102101,41910,3374670,00569584,90314
13129105107,42325,8720990,023078149,1889
14132112111,07720,851630,00824369,1889
Итого162912991296,632446,41520,7030741738,357
Среднее значение116,357192,78571хххх
Найти уравнение регрессии y по x статистика8,498811,1431хххх
Найти уравнение регрессии y по x статистика72,23124,17хххх

Решая систему нормальных уравнений, определяем параметры логарифмической функции.

Найти уравнение регрессии y по x статистика

Найти уравнение регрессии y по x статистика

Получим линейное уравнение:

Найти уравнение регрессии y по x статистика

Выполнив его потенцирование, получим:

Найти уравнение регрессии y по x статистика

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата Найти уравнение регрессии y по x статистика. По ним рассчитаем показатели: тесноты связи – индекс корреляции и среднюю ошибку аппроксимации.

Найти уравнение регрессии y по x статистика

Связь достаточно тесная.

Найти уравнение регрессии y по x статистика

В среднем расчётные значения отклоняются от фактических на 5,02%.

Найти уравнение регрессии y по x статистика

Найти уравнение регрессии y по x статистика

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Найти уравнение регрессии y по x статистика

3. Уравнение равносторонней гиперболы

Найти уравнение регрессии y по x статистика

Для определения параметров этого уравнения используется система нормальных уравнений:

Найти уравнение регрессии y по x статистика

Произведем замену переменных

Найти уравнение регрессии y по x статистика

и получим следующую систему нормальных уравнений:

Найти уравнение регрессии y по x статистика

Решая систему нормальных уравнений, определяем параметры гиперболы.

Составим таблицу расчётных данных, как показано в таблице 3.

Таблица 3 Расчетные данные для оценки гиперболической зависимости

№п/пхуzyzНайти уравнение регрессии y по x статистикаНайти уравнение регрессии y по x статистика
1100700,0100000000,7000000,00010004900
2105790,0095238100,7523810,00009076241
3108850,0092592590,7870370,00008577225
4113840,0088495580,7433630,00007837056
5118850,0084745760,7203390,00007187225
6118850,0084745760,7203390,00007187225
7110960,0090909090,8727270,00008269216
8115990,0086956520,8608700,00007569801
91191000,0084033610,8403360,000070610000
10118980,0084745760,8305080,00007189604
11120990,0083333330,8250000,00006949801
121241020,0080645160,8225810,000065010404
131291050,0077519380,8139530,000060111025
141321120,0075757580,8484850,000057412544
Итого:162912990,12097182311,137920,0010510122267
Среднее значение:116,357192,785710,0086408440,7955660,00007518733,357
Найти уравнение регрессии y по x статистика8,498811,14310,000640820ххх
Найти уравнение регрессии y по x статистика72,23124,170,000000411ххх

Продолжение таблицы 3 Расчетные данные для оценки гиперболической зависимости

№п/пхуНайти уравнение регрессии y по x статистикаНайти уравнение регрессии y по x статистикаНайти уравнение регрессии y по x статистикаНайти уравнение регрессии y по x статистика
11007072,32620,0332315,411206519,1886
21057979,494050,0062540,244083190,0458
31088583,476190,0179272,32201260,61728
41138489,643210,06718131,8458577,1887
51188595,287610,121031105,834960,61728
61188595,287610,121031105,834960,61728
71109686,010270,1040699,7946510,33166
81159991,959870,07111249,5634438,6174
911910096,359570,03640413,2527252,04598
101189895,287610,0276777,35705927,18882
111209997,413670,0160242,51645338,6174
12124102101,460,0052940,29156584,90314
13129105106,16510,0110961,357478149,1889
14132112108,81710,02841910,1311369,1889
Итого:162912991298,9880,666742435,75751738,357
Среднее значение:116,357192,78571хххх
Найти уравнение регрессии y по x статистика8,498811,1431хххх
Найти уравнение регрессии y по x статистика72,23124,17хххх

Значения параметров регрессии a и b составили:

Найти уравнение регрессии y по x статистика

Найти уравнение регрессии y по x статистика

Найти уравнение регрессии y по x статистика

Найти уравнение регрессии y по x статистика

Связь достаточно тесная.

Найти уравнение регрессии y по x статистика

В среднем расчётные значения отклоняются от фактических на 4,76%.

Найти уравнение регрессии y по x статистика

Найти уравнение регрессии y по x статистика

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Найти уравнение регрессии y по x статистика

По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи по сравнению с линейной и степенной регрессиями. Средняя ошибка аппроксимации остаётся на допустимом уровне.

Видео:Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

Найти уравнение регрессии y по x статистика

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Видео:Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Уравнение регрессии

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

В сервисе для нахождения параметров регрессии используется МНК. Система нормальных уравнений для линейной регрессии: Найти уравнение регрессии y по x статистика. Также можно получить ответ, используя матричный метод. см. также Статистические функции в Excel

Уравнение парной регрессии относится к уравнению регрессии первого порядка. Если эконометрическая модель содержит только одну объясняющую переменную, то она имеет название парной регрессии. Уравнение регрессии второго порядка и уравнение регрессии третьего порядка относятся к нелинейным уравнениям регрессии.

Пример . Осуществите выбор зависимой (объясняемой) и объясняющей переменной для построения парной регрессионной модели. Дайте графическое изображение регрессионной зависимости. Определите теоретическое уравнение парной регрессии. Оцените адекватность построенной модели (интерпретируйте R-квадрат, показатели t-статистики, F-статистики).
Решение будем проводить на основе процесса эконометрического моделирования.
1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли.
Спецификация модели — определение цели исследования и выбор экономических переменных модели.
Ситуационная (практическая) задача. По 10 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс. руб.) от удельного веса рабочих высокой квалификации в общей численности рабочих x (в %).
2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез.
Уже на этом этапе можно говорить о явной зависимости уровня квалификации рабочего и его выработкой, ведь чем опытней работник, тем выше его производительность. Но как эту зависимость оценить?
Парная регрессия представляет собой регрессию между двумя переменными – y и x , т. е. модель вида:

🔥 Видео

Математика #1 | Корреляция и регрессияСкачать

Математика #1 | Корреляция и регрессия

Что такое линейная регрессия? Душкин объяснитСкачать

Что такое линейная регрессия? Душкин объяснит

Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

Уравнение линейной регрессии. Интерпретация стандартной таблички

Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция

Уравнение парной линейной регрессии с помощью Анализа ДанныхСкачать

Уравнение парной линейной регрессии с помощью Анализа Данных

Как вычислить линейный коэффициент корреляции в MS Excel и построить уравнение регрессии?Скачать

Как вычислить линейный коэффициент корреляции в MS Excel  и построить уравнение регрессии?

РЕГРЕССИОННЫЙ АНАЛИЗ STATISTICA #12Скачать

РЕГРЕССИОННЫЙ АНАЛИЗ STATISTICA #12

Как вычислить линейный коэффициент корреляции по таблице? Корреляционное поле и прямая регрессииСкачать

Как вычислить линейный коэффициент корреляции по таблице? Корреляционное поле и прямая регрессии

Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

Регрессия в ExcelСкачать

Регрессия в Excel

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Эконометрика. Множественная регрессия и корреляция.Скачать

Эконометрика. Множественная регрессия и корреляция.

Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать

Корреляционно-регрессионный анализ многомерных данных в Excel

Метод наименьших квадратов. Линейная аппроксимацияСкачать

Метод наименьших квадратов. Линейная аппроксимация

Множественная регрессияСкачать

Множественная регрессия

Регрессия - как строить и интерпретировать. Примеры линейной и множественной регрессии.Скачать

Регрессия - как строить и интерпретировать. Примеры линейной и множественной регрессии.

Регрессия. Регрессионный анализ в ExcelСкачать

Регрессия. Регрессионный анализ в Excel
Поделиться или сохранить к себе:
Найти уравнение регрессии y по x статистика