Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости онлайн

С помощю этого онлайн калькулятора можно найти уравнение плоскости, проходящей через заданную точку и параллельной данной плоскости. Дается подробное решение с пояснениями. Для нахождения уравнения плоскости, введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Уравнение плоскости через 2 точки параллельно векторуСкачать

Уравнение плоскости через 2 точки параллельно вектору

Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости − теория, примеры и решения

Ax+By+Cz+D=0(1)

Наша задача найти уравнение плоскости, проходящей через точку M0 и параллельной плоскости (1)(Рис.1).

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

Все параллельные плоскости имеют коллинеарные нормальные векторы. Поэтому для построения параллельной к (1) плоскости, проходящей через точку M0(x0, y0, z0) нужно взять в качестве нормального вектора искомой плоскости, нормальный вектор n=(A, B, C) плоскости (1). Далее нужно найти такое значение D, при котором точка M0(x0, y0, z0) удовлетворяла уравнению плоскости (1):

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор(2)

Решим (2) относительно D:

D=−(Ax0+By0+Cz0)(3)

Подставляя значение D из (3) в (1), получим:

Ax+By+Cz−(Ax0+By0+Cz0)=0(4)

Уравнение (4) можно представить также в следующем виде:

A(xx0)+B(yy0)+C(zz0)=0(5)

Уравнение (5) является уравнением плоскости, проходящей через точку M0(x0, y0, z0) и параллельной плоскости (1).

Найти уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости :

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор(6)

Запишем коэффициенты нормального вектора плоскости (6):

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор(7)

Подставляя координаты точки M0 и координаты нормального вектора в (3), получим:

Найти уравнение плоскости проходящей через точку параллельно плоскости калькуляторНайти уравнение плоскости проходящей через точку параллельно плоскости калькулятор(8)

Подставляя значения A, B, C, D в уравнение плоскости (1), получим:

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

Уравнение плоскости можно представить в более упрощенном виде, умножив на 4:

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

Уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости (6) имеет следующий вид:

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Найти уравнение плоскости

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле

x — x 1y — y 1z — z 1= 0
x 2 — x 1y 2 — y 1z 2 — z 1
x 3 — x 1y 3 — y 1z 3 — z 1


Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскостиСкачать

Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскости

Калькулятор онлайн.
Составить уравнение плоскости

Этот калькулятор онлайн составляет (находит) уравнение плоскости по трем точкам, лежащим на плоскости или по нормали и одной точке лежащей на плоскости.

Онлайн калькулятор для нахождения уравнения плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac )

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac )

Составить уравнение плоскости

Видео:Уравнение плоскости через 2 точки параллельно прямойСкачать

Уравнение плоскости через 2 точки параллельно прямой

Немного теории.

Видео:Задача 8. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору.Скачать

Задача 8. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору.

Общее уравнение плоскости

Пусть заданы:
прямоугольная система координат Oxyz,
произвольная плоскость ( pi );
точка ( M_0(x_0;y_0;z_0) in pi );
вектор ( vec(A;B;C) ), перпендикулярный плоскости ( pi ) (смотри рисунок).
Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

Рассмотрим произвольную точку М(х; у; z). Точка М лежит на плоскости ( pi ) тогда и только тогда, когда векторы ( vec ) и ( vec ) взаимно перпендикулярны. Так как координаты вектора ( vec ) равны ( x-x_0, ; y-y_0, ; z-z_0 ) , то в силу условия перпендикулярности двух векторов (скалярное произведение должно быть равно нулю) получаем, что точка М (х; у; z) лежит на плоскости ( pi ) тогда и только тогда, когда

Раскрывая скобки, приведем уравнение (1) к виду
( Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0 )
Далее, обозначая число ( -Ax_0-By_0-Cz_0 ) через ( D ), получаем

Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость. Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение ( Ax+By+Cz+D=0 ) с произвольными коэффициентами А, В, С и D, причем из коэффициентов А, В и С хотя бы один отличен от нуля. Данное уравнение заведомо имеет хотя бы одно решение ( x_0, ; y_0, ; z_0 ) ( если, например, ( C neq 0 ), то, взяв произвольные х0, и y0, из уравнения получим: ( z_0 = -fracx_0 — fracy_0-frac ) ).

Таким образом, существует хотя бы одна точка M0(x0; y0; z0), координаты которой удовлетворяют уравнению, т.е. Ax0+By0+Cz0+D=0. Вычитая это числовое равенство из уравнения Ax+By+Cz+D=0, получаем уравнение
A(x-x0) + B(y-y0) + C(z-z0) + D=0,
эквивалентное данному. Полученное уравнение (а стало быть, и уравнение Ax+By+Cz+D=0 ) совпадает с уравнением (1) и, значит, определяет плоскость ( pi ), проходящую через точку M0(x0 и перпендикулярную вектору ( vec(A;B;C) ).

Вектор ( vec(A;B;C) ), перпендикулярный плоскости, называется нормальным вектором или нормалью этой плоскости.

Теорема
Если два уравнения ( A_1x+B_1y+C_1z+D_1=0 ) и ( A_2x+B_2y+C_2z+D_2=0 ) определяют одну и ту же плоскость, то их коэффициенты пропорциональны, т.е. $$ frac = frac = frac = frac $$

Угол между двумя плоскостями

Рассмотрим две плоскости ( pi_1 ), и ( pi_2 ), заданные соответственно уравнениями

При любом расположении плоскостей ( pi_1 ), и ( pi_2 ) в пространстве один из углов ( varphi ) между ними равен углу между их нормалями ( vec(A_1;B_1;C_1) ) и ( vec(A_2;B_2;C_2) ) и вычисляется по следующей формуле:
$$ cos varphi = frac < veccdot vec>< |vec| |vec| > = frac <sqrt; sqrt > tag $$

Второй угол равен ( 180^circ -cos varphi )

Условие параллельности плоскостей

Если плоскости ( pi_1 ) и ( pi_2 ) параллельны, то коллинеарны их нормали ( vec ) и ( vec ), и наоборот. Но тогда
$$ frac = frac = frac tag $$
Условие (4) является условием параллельности плоскостей ( pi_1 ) и ( pi_2 )

Условие перпендикулярности плоскостей

Если плоскости ( pi_1 ) и ( pi_2 ) взаимно перпендикулярны, то их нормали ( vec ) и ( vec ) также перпендикулярны, и наоборот. Поэтому из формулы (3) непосредственно получаем условие перпендикулярности плоскостей ( pi_1 ) и ( pi_2 ):
( A_1 A_2 + B_1 B_2 + C_1 C_2 = 0 )

Видео:Уравнение плоскости через 3 точкиСкачать

Уравнение плоскости через 3 точки

Уравнение плоскости по координатам трех точек: онлайн-калькулятор

Любая плоскость может быть проведена через три точки, не принадлежащие одной прямой. Автоматический сервис находит уравнение плоскости, которая проходит через эти три точки.

x — x a y — y a z — z a x b — x a y b — y a z b — z a x c — x a y c — y a z c — z a = 0 .

Чтобы решить уравнение плоскости по трем точкам онлайн, выполните простые действия:

  • впишите значения точек A , B , C в соответствующие пустые поля;
  • для получения решения воспользуйтесь кнопкой «Рассчитать».

Zaochnik предоставляет пошаговые вычисления и точный ответ бесплатно.

Как найти уравнение плоскости по координатам трех принадлежащих ей точек с помощью онлайн-калькулятора

Рассмотрим пример, наглядно демонстрирующий работу с онлайн-калькулятором. Пусть нужно найти уравнение плоскости, проходящей через три известные точки. Для этого в онлайн-калькуляторе просто зададим эти точки:

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

Важно: точки не должны принадлежать одной прямой!

Зададим точки произвольно и нажмем «Рассчитать»:

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

После этого калькулятор выдаст ответ с подробными выкладками решения:

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

Найти уравнение плоскости проходящей через точку параллельно плоскости калькулятор

Видео:2. Уравнение плоскости примеры решения задач #1Скачать

2. Уравнение плоскости примеры решения задач #1

Материалы, которые помогут вам лучше разобраться в теме:

Видео:Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать

Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).

Уравнение плоскости онлайн по 3 точкам

Построить плоскость по уравнению онлайн понадобится:

  • студентам университетов при выполнении заданий по математическим дисциплинам;
  • школьникам, которые готовятся к поступлению в технические ВУЗы и участникам олимпиад;
  • преподавателям, проверяющим работы учащихся и составляющим задачи;
  • инженерам для облегчения процесса расчетов.

Цель сервиса – помощь в самостоятельных вычислениях учащимся. Автоматическая формула ускоряет получение ответа на задачу, позволяет избежать ошибок и не требует многократной перепроверки одних и тех же действий. Онлайн-калькулятор позволяет осуществлять подготовку к занятиям с усвоением непонятого ранее материала, запоминать и применять готовые алгоритмы решений.

Если возникла необходимость заказать услуги опытных преподавателей по решению уравнений или заданий на другие темы, обратитесь к консультанту. Мы гарантируем оперативный ответ и выгодное предложение.

📽️ Видео

Задача 7. Найти расстояние от точки M0 до плоскости, проходящей через три точки M1, M2, M3.Скачать

Задача 7. Найти расстояние от точки M0 до плоскости, проходящей через три точки M1, M2, M3.

Уравнение плоскости через точку и нормальСкачать

Уравнение плоскости через точку и нормаль

Видеоурок "Уравнение плоскости по трем точкам"Скачать

Видеоурок "Уравнение плоскости по трем точкам"

455. Уравнение плоскости, параллельной осиСкачать

455. Уравнение плоскости, параллельной оси

12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.
Поделиться или сохранить к себе: