Найти уравнение плоскости проходящей через начало координат и через прямую

Уравнение плоскости, которая проходит через заданную прямую и заданную точку.

В этой статье собрана информация, необходимая для решения задачи составления уравнения плоскости, проходящей через заданную прямую и заданную точку. После решения этой задачи в общем виде мы приведем развернутые решения примеров на составление уравнения плоскости, которая проходит через заданную прямую и точку.

Навигация по странице.

Видео:Уравнение прямой, проходящей через начало координатСкачать

Уравнение прямой, проходящей через начало координат

Нахождение уравнения плоскости, проходящей через заданную прямую и заданную точку.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана прямая a и точка Найти уравнение плоскости проходящей через начало координат и через прямую, не лежащая на прямой a . Поставим перед собой задачу: получить уравнение плоскости Найти уравнение плоскости проходящей через начало координат и через прямую, проходящей через прямую a и точку М3 .

Сначала покажем, что существует единственная плоскость, уравнение которой нам требуется составить.

Напомним две аксиомы:

  • через три различные точки пространства, не лежащие на одной прямой, проходит единственная плоскость;
  • если две различные точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.

Из этих утверждений следует, что через прямую и не лежащую на ней точку можно провести единственную плоскость. Таким образом, в поставленной нами задаче через прямую a и точку M3 проходит единственная плоскость Найти уравнение плоскости проходящей через начало координат и через прямую, и нам требуется написать уравнение этой плоскости.

Теперь приступим к нахождению уравнения плоскости, проходящей через заданную прямую a и точку Найти уравнение плоскости проходящей через начало координат и через прямую.

Если прямая a задана через указание координат двух различных точек М1 и М2 , лежащих на ней, то наша задача сводится к нахождению уравнения плоскости, проходящей через три заданные точки М1 , М2 и М3 .

Если же прямая a задана иначе, то нам сначала придется найти координаты двух точек М1 и М2 , лежащих на прямой a , а уже после этого записать уравнение плоскости, проходящей через три точки М1 , М2 и М3 , которое и будет искомым уравнением плоскости, проходящей через прямую a и точку М3 .

Разберемся, как найти координаты двух различных точек М1 и М2 , лежащих на заданной прямой a .

В прямоугольной системе координат в пространстве любой прямой линии соответствуют некоторые уравнения прямой в пространстве. Будем считать, что способ задания прямой a в условии задачи позволяет получить ее параметрические уравнения прямой в пространстве вида Найти уравнение плоскости проходящей через начало координат и через прямую. Тогда, приняв Найти уравнение плоскости проходящей через начало координат и через прямую, имеем точку Найти уравнение плоскости проходящей через начало координат и через прямую, лежащую на прямой a . Придав параметру Найти уравнение плоскости проходящей через начало координат и через прямуюотличное от нуля действительное значение, из параметрических уравнений прямой a мы сможем вычислить координаты Найти уравнение плоскости проходящей через начало координат и через прямуюточки М2 , также лежащей на прямой a и отличной от точки М1 .

После этого нам останется лишь написать уравнение плоскости, проходящей через три различных и не лежащих на одной прямой точки Найти уравнение плоскости проходящей через начало координат и через прямуюи Найти уравнение плоскости проходящей через начало координат и через прямую, в виде Найти уравнение плоскости проходящей через начало координат и через прямую.

Итак, мы получили уравнение плоскости, проходящей через заданную прямую a и заданную точку М3 , не лежащую на прямой a .

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Примеры составления уравнения плоскости, проходящей через заданную точку и прямую.

Покажем решения нескольких примеров, в которых разберем рассмотренный метод нахождения уравнения плоскости, проходящей через заданную прямую и заданную точку.

Начнем с самого простого случая.

Напишите общее уравнение плоскости, которая проходит через координатную прямую Ox и точку Найти уравнение плоскости проходящей через начало координат и через прямую.

Возьмем на координатной прямой Ox две различные точки, например, Найти уравнение плоскости проходящей через начало координат и через прямуюи Найти уравнение плоскости проходящей через начало координат и через прямую.

Теперь получим уравнение плоскости, проходящей через три точки М1 , М2 и М3 :
Найти уравнение плоскости проходящей через начало координат и через прямую

Это уравнение является искомым общим уравнением плоскости, проходящей через заданную прямую Ox и точку Найти уравнение плоскости проходящей через начало координат и через прямую.

Найти уравнение плоскости проходящей через начало координат и через прямую.

Если известно, что плоскость проходит через заданную точку и заданную прямую, и требуется написать уравнение плоскости в отрезках или нормальное уравнение плоскости, то следует сначала получить общее уравнение заданной плоскости, а от него переходить к уравнению плоскости требуемого вида.

Составьте нормальное уравнение плоскости, которая проходит через прямую Найти уравнение плоскости проходящей через начало координат и через прямуюи точку Найти уравнение плоскости проходящей через начало координат и через прямую.

Сначала напишем общее уравнение заданной плоскости. Для этого найдем координаты двух различных точек, лежащих на прямой Найти уравнение плоскости проходящей через начало координат и через прямую. Параметрические уравнения этой прямой имеют вид Найти уравнение плоскости проходящей через начало координат и через прямую. Пусть точка М1 соответствует значению Найти уравнение плоскости проходящей через начало координат и через прямую, а точка М2Найти уравнение плоскости проходящей через начало координат и через прямую. Вычисляем координаты точек М1 и М2 :
Найти уравнение плоскости проходящей через начало координат и через прямую

Теперь мы можем составить общее уравнение прямой, проходящей через точку Найти уравнение плоскости проходящей через начало координат и через прямуюи прямую Найти уравнение плоскости проходящей через начало координат и через прямую:
Найти уравнение плоскости проходящей через начало координат и через прямую

Осталось получить требуемый вид уравнения плоскости, умножив обе части полученного уравнения на нормирующий множитель Найти уравнение плоскости проходящей через начало координат и через прямую.

Найти уравнение плоскости проходящей через начало координат и через прямую.

Итак, нахождение уравнения плоскости, проходящей через заданную точку и заданную прямую, упирается в нахождение координат двух различных точек, лежащих на заданной прямой. В этом часто состоит основная сложность при решении подобных задач. В заключении разберем решение примера на составление уравнения плоскости, проходящей через заданную точку и прямую, которую определяют уравнения двух пересекающихся плоскостей.

В прямоугольной системе координат Oxyz задана точка Найти уравнение плоскости проходящей через начало координат и через прямуюи прямая a , которая является линией пересечения двух плоскостей Найти уравнение плоскости проходящей через начало координат и через прямуюи Найти уравнение плоскости проходящей через начало координат и через прямую. Напишите уравнение плоскости, проходящей через прямую a и точку М3 .

Отталкиваясь от заданных уравнений двух пересекающихся плоскостей Найти уравнение плоскости проходящей через начало координат и через прямуюи Найти уравнение плоскости проходящей через начало координат и через прямую, получим параметрические уравнения прямой a , чтобы найти координаты двух точек М1 и М2 , лежащих на прямой a . После этого напишем требуемое уравнение плоскости, проходящей через точку М3 и прямую a , как уравнение плоскости, проходящей через три точки М1 , М2 и М3 .

Процесс перехода от уравнений двух плоскостей, пересекающихся по прямой a , к параметрическим уравнениям прямой a подробно описан в статье уравнения прямой – уравнения двух пересекающихся плоскостей. Не будем на этом подробно останавливаться, а запишем лишь итоговый результат Найти уравнение плоскости проходящей через начало координат и через прямую. При Найти уравнение плоскости проходящей через начало координат и через прямуюполучаем точку Найти уравнение плоскости проходящей через начало координат и через прямую, при Найти уравнение плоскости проходящей через начало координат и через прямую— точку Найти уравнение плоскости проходящей через начало координат и через прямую.

Таким образом, уравнение плоскости, проходящей через точку Найти уравнение плоскости проходящей через начало координат и через прямуюи прямую Найти уравнение плоскости проходящей через начало координат и через прямую, имеет вид
Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую.

Видео:Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскостиСкачать

Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскости

Уравнение плоскости, проходящей через точку и прямую онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и через данную прямую (точка не лежит на этой прямой). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры

Уравнение плоскости, проходящей через точку и прямую − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L:

Найти уравнение плоскости проходящей через начало координат и через прямую.(1)

Задача заключается в построении уравнения плоскости α, проходящей через точку M0 и и через прямую L(Рис.1).

Найти уравнение плоскости проходящей через начало координат и через прямую

Решение. Уравнение плоскости, проходящей через точку M0 и имеющий нормальный вектор n=<A, B, C> имеет следующий вид:

A(xx0)+B(yy0)+C(zz0)=0.(2)

Направляющий вектор прямой L имеет вид q=<m, p, l>. Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:

A(xx1)+B(yy1)+C(zz1)=0.(3)

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:

Вычитая уравнение (3) из уравнения (2), получим:

A(x1x0)+B(y1y0)+C(z1z0)=0.(5)

Решая совместно уравнения (4) и (5) отностительно коэффициентов A, B, C получим такие значения A, B, C, при которых уравнение (2) проходит через точку M0 и через прямую (1). Для решения систему уравнений (4), (5), запишем их в матричном виде:

Найти уравнение плоскости проходящей через начало координат и через прямую.(6)

Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн.

Получив частное решение уравнения (6) и подставив полученные значения A, B, C в (2), получим решение задачи.

Найти уравнение плоскости проходящей через начало координат и через прямую(7)

Решение. Уравнение плоскости α, проходящей через точку M0(x0, y0, z0)=M0(1, 2, 5) и имеющий нормальный вектор n=<A, B, C> представляется формулой (2).

Вычитая уравнение (3) из уравнения (2), получим:

A(x1x0)+B(y1y0)+C(z1z0)=0.(8)

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:

Найти уравнение плоскости проходящей через начало координат и через прямую(10)
Найти уравнение плоскости проходящей через начало координат и через прямую(11)

Решим систему линейных уравнений (10) и (11) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:

Найти уравнение плоскости проходящей через начало координат и через прямую(12)

Решив однородную систему линейных уравнений (12) используя метод Гаусса, найдем следующее частное решение:

Найти уравнение плоскости проходящей через начало координат и через прямую

Подставляя значения коэффициентов A, B, C в уравнение плоскости (2), получим:

Найти уравнение плоскости проходящей через начало координат и через прямую(13)

Упростим уравнение (13):

Найти уравнение плоскости проходящей через начало координат и через прямую(14)

Ответ: Уравнение плоскости, проходящей через точку M0(1, 2, 5) и через прямую (7) имеет вид (14).

Пример 2. Найти уравнение плоскости α, проходящую через точку M0(4, 3, −6) и через прямую L, заданной параметрическим уравнением:

Найти уравнение плоскости проходящей через начало координат и через прямую(15)

Решение. Приведем параметрическое уравнение (15) к каноническому виду:

Найти уравнение плоскости проходящей через начало координат и через прямую(16)

Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой:

A(xx0)+B(yy0)+C(zz0)=0.(17)

Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1)=(0, 2, 4). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:

A(xx1)+B(yy1)+C(zz1)=0.(18)

Вычитая уравнение (18) из уравнения (17), получим:

A(x1x0)+B(y1y0)+C(z1z0)=0.(19)

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n должен быть ортогональным направляющему вектору прямой L :

Am+Bp+Cl=0.(20)
Найти уравнение плоскости проходящей через начало координат и через прямую(21)
Найти уравнение плоскости проходящей через начало координат и через прямую(22)

Решим систему линейных уравнений (21) и (22) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:

Найти уравнение плоскости проходящей через начало координат и через прямую(23)

Решив однородную систему линейных уравнений (23) используя метод Гаусса, найдем следующее частное решение:

Найти уравнение плоскости проходящей через начало координат и через прямую

Подставляя значения коэффициентов A, B, C в уравнение плоскости (17), получим:

Найти уравнение плоскости проходящей через начало координат и через прямую(24)

Упростим уравнение (24):

Найти уравнение плоскости проходящей через начало координат и через прямую(25)

Уравнение плоскости можно представить более упрощенном виде, умножив на число 23.

Найти уравнение плоскости проходящей через начало координат и через прямую(26)

Ответ: Уравнение плоскости, проходящей через точку M0(4, 3, −6) и через прямую (16) имеет вид (26).

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Общее уравнение плоскости : описание, примеры, решение задач

В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.

Видео:Уравнение плоскости через 3 точкиСкачать

Уравнение плоскости через 3 точки

Общее уравнение плоскости: основные сведения

Перед началом разбора темы вспомним, что такое уравнение плоскости в прямоугольной системе координат в трёхмерном пространстве. Пусть нам дана прямоугольная система координат O x y z в трехмерном пространстве, уравнением плоскости в заданной системе координат будет такое уравнение с тремя неизвестными x , y , и z , которому отвечали бы координаты всех точек этой плоскости и не отвечали бы координаты никаких прочих точек. Иначе говоря, подставив в уравнение плоскости координаты некоторой точки этой плоскости, получаем тождество. Если же в уравнение подставить координаты какой-то другой точки, не принадлежащей заданной плоскости, равенство станет неверным.

Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.

Любую плоскость, заданную в прямоугольной системе координат O x y z трехмерного пространства, можно определить уравнением A x + B y + C z + D = 0 . В свою очередь, любое уравнение A x + B y + C z + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A , B , C , D – некоторые действительные числа, и числа A , B , C не равны одновременно нулю.

Теорема состоит из двух частей. Разберем доказательство каждой из них.

  1. Первая часть теоремы гласит, что любую заданную плоскость возможно описать уравнением вида A x + B y + C z + D = 0 . Допустим, задана некоторая плоскость и точка M 0 ( x 0 , y 0 , z 0 ) , через которую эта плоскость проходит. Нормальным вектором этой плоскости является n → = ( A , B , C ) . Приведем доказательство, что указанную плоскость в прямоугольной системе координат O x y z задает уравнение A x + B y + C z + D = 0 .

Возьмем произвольную точку заданной плоскости M ( x , y , z ) .В таком случае векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) будут перпендикулярны друг другу, а значит их скалярное произведение равно нулю:

n → , M 0 M → = A x — x 0 + B ( y — y 0 ) + C ( z — z 0 ) = A x + B y + C z — ( A x 0 + B y 0 + C z 0 )

Примем D = — ( A x 0 + B y 0 + C z 0 ) , тогда уравнение преобразуется в следующий вид: A x + B y + C z + D = 0 . Оно и будет задавать исходную плоскость. Первая часть теоремы доказана.

  1. Во второй части теоремы утверждается, что любое уравнение вида A x + B y + C z + D = 0 задает некоторую плоскость в прямоугольной системе координат O x y z трехмерного пространства. Докажем это.

В теореме также указано, что действительные числа А , B , C одновременно не являются равными нулю. Тогда существует некоторая точка M 0 ( x 0 , y 0 , z 0 ) , координаты которой отвечают уравнению A x + B y + C z + D = 0 , т.е. верным будет равенство A x 0 + B y 0 + C z 0 + D = 0 . Отнимем левую и правую части этого равенства от левой и правой частей уравнения A x + B y + C z + D = 0 . Получим уравнение вида

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 , и оно эквивалентно уравнению A x + B y + C z + D = 0 . Докажем, что уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает некоторую плоскость.

Уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 являет собой условие, необходимое и достаточное для перпендикулярности векторов n → = ( A , B , C ) и M 0 M → = x — x 0 , y — y 0 , z — z 0 . Опираясь на утверждение, указанное перед теоремой, возможно утверждать, что при справедливом равенстве A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 множество точек M ( x , y , z ) задает плоскость, у которой нормальный вектор n → = ( A , B , C ) . При этом плоскость проходит через точку M ( x 0 , y 0 , z 0 ) . Иначе говоря, уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает в прямоугольной системе координат O x y z трехмерного пространства некоторую плоскость. Таким, образом, эквивалентное этому уравнению уравнение A x + B y + C z + D = 0 также определяет эту плоскость. Теорема доказана полностью.

Найти уравнение плоскости проходящей через начало координат и через прямую

Уравнение вида A x + B y + C z + D = 0 называют общим уравнением плоскости в прямоугольной системе координат O x y z трехмерного пространства.

Допустим, задано некоторое общее уравнение плоскости λ · A x + λ · B y + λ · C z + λ · D = 0 , где λ – некое действительное число, не равное нулю. Это уравнение также задает в прямоугольной системе координат некоторую плоскость, совпадающую с плоскостью, определяемую уравнением A x + B y + C z + D = 0 , поскольку описывает то же самое множество точек трехмерного пространства. Например, уравнения x — 2 · y + 3 · z — 7 = 0 и — 2 · x + 4 · y — 2 3 · z + 14 = 0 задают одну и ту же плоскость, поскольку им обоим отвечают координаты одних и тех же точек трехмерного пространства.

Раскроем чуть шире смысл теорем.

В пределах заданной системы координат плоскость и общее уравнение, ее определяющее, неразрывно связаны: каждой плоскости отвечает общее уравнение плоскости вида A x + B y + C z + D = 0 ( при конкретных значениях чисел A , B , C , D ). В свою очередь, этому уравнению отвечает заданная плоскость в заданной прямоугольной системе координат.

Укажем пример как иллюстрацию этих утверждений.

Ниже приведен чертеж, на котором изображена плоскость в фиксированной прямоугольной системе координат трехмерного пространства. Заданной плоскости отвечает общее уравнение вида 4 x + 5 y – 5 z + 20 = 0 , и ему соответствуют координаты любой точки этой плоскости. В свою очередь, уравнение 4 x + 5 y – 5 z + 20 = 0 описывает в заданной системе координат множество точек, которые составляют изображенную плоскость.

Найти уравнение плоскости проходящей через начало координат и через прямую

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Общее уравнение плоскости, проходящей через точку

Повторимся: точка M 0 ( x 0 , y 0 , z 0 ) лежит на плоскости, заданной в прямоугольной системе координат трехмерного пространства уравнением A x + B y + C z + D = 0 в том случае, когда подставив координаты точки M 0 ( x 0 , y 0 , z 0 ) в уравнение A x + B y + C z + D = 0 , мы получим тождество.

Заданы точки M 0 ( 1 , — 1 , — 3 ) и N 0 ( 0 , 2 , — 8 ) и плоскость, определяемая уравнением 2 x + 3 y — z — 2 = 0 . Необходимо проверить, принадлежат ли заданные точки заданной плоскости.

Решение

Подставим координаты точки М 0 в исходной уравнение плоскости:

2 · 1 + 3 · ( — 1 ) — ( — 3 ) — 2 = 0 ⇔ 0 = 0

Мы видим, что получено верное равенство, значит точка M 0 ( 1 , — 1 , — 3 ) принадлежит заданной плоскости.

Аналогично проверим точку N 0 . Подставим ее координаты в исходное уравнение:

2 · 0 + 3 · 2 — ( — 8 ) — 2 = 0 ⇔ 12 = 0

Равенство неверно. Таким, образом, точка N 0 ( 0 , 2 , — 8 ) не принадлежит заданной плоскости.

Ответ: точка М 0 принадлежит заданной плоскости; точка N 0 – не принадлежит.

Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n → = ( A , B , C ) — нормальный вектор для плоскости, определяемой уравнением A x + B y + C z + D = 0 . Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.

В прямоугольной системе координат задана плоскость 2 x + 3 y — z + 5 = 0 . Необходимо записать координаты всех нормальных векторов заданной плоскости.

Решение

Мы знаем, что заданные общим уравнением коэффициенты при переменных x , y , z служат координатами нормального вектора заданной плоскости. Тогда, нормальный вектор n → исходной плоскости имеет координаты 2 , 3 , — 1 . В свою очередь, множество нормальных векторов запишем так:

λ · n → = λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Ответ: λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.

Очевидным фактом является то, что нормальный вектор n → = ( A , B , C ) является нормальным вектором бесконечного множества параллельных плоскостей. Поэтому для обозначения конкретной плоскости введем дополнительное условие: зададим некоторую точку M 0 ( x 0 , y 0 , z 0 ) , принадлежащую плоскости. Так, задавая в условии нормальный вектор и некоторую точку плоскости, мы ее зафиксировали.

Общее уравнение плоскости с нормальным вектором n → = ( A , B , C ) будет выглядеть так: A x + B y + C z + D = 0 . По условию задачи точка M 0 ( x 0 , y 0 , z 0 ) принадлежит заданной плоскости, т.е. ее координаты отвечают уравнению плоскости, а значит верно равенство: A x 0 + B y 0 + C z 0 + D = 0

Вычитая соответственно правые и левые части исходного уравнения и уравнения A x 0 + B y 0 + C z 0 + D = 0 , получим уравнение вида A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 . Оно и будет уравнением плоскости, проходящей через точку M 0 ( x 0 , y 0 , z 0 ) и имеющей нормальный вектор n → = ( A , B , C ) .

Возможно получить это уравнение другим способом.

Очевидным фактом является то, что все точки М ( x , y , z ) трехмерного пространства задают данную плоскость тогда и только тогда, когда векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) перпендикулярны или, иначе говоря, когда скалярное произведение этих векторов равно нулю:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

Задана точка М 0 ( — 1 , 2 , — 3 ) , через которую в прямоугольной системе координат проходит плоскость, а также задан нормальный вектор этой плоскости n → = ( 3 , 7 , — 5 ) . Необходимо записать уравнение заданной плоскости.

Решение

Рассмотрим два способа решения.

  1. Исходные условия позволяют получить следующие данные:

x 0 = — 1 , y 0 = 2 , z 0 = — 3 , A = 3 , B = 7 , C = — 5

Подставим их в общее уравнение плоскости, проходящей через точку, т.е. в A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

3 ( x — ( — 1 ) ) + 7 ( y — 2 ) — 5 ( z — ( — 3 ) ) = 0 ⇔ 3 x + 7 y — 5 z — 26 = 0

  1. Допустим, М ( x , y , z ) – некоторая точки заданной плоскости. Определим координаты вектора M 0 M → по координатам точек начала и конца:

M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) = ( x + 1 , y — 2 , z + 3 )

Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:

n → , M 0 M → = 0 ⇔ 3 ( x + 1 ) + 7 ( y — 2 ) — 5 ( z + 3 ) = 0 ⇔ ⇔ 3 x + 7 y — 5 z — 26 = 0

Ответ: 3 x + 7 y — 5 z — 26 = 0

Видео:Уравнение прямой проходящей через начало координат 7 - 8 клСкачать

Уравнение прямой проходящей через начало координат 7 - 8 кл

Неполное общее уравнение плоскости

Выше мы говорили о том, что, когда все числа А , B , C , D отличны от нуля, общее уравнение плоскости A x + B y + C z + D = 0 называют полным. В ином случае общее уравнение плоскости является неполным.

Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.

  1. В случае, когда D = 0 , мы получаем общее неполное уравнение плоскости: A x + B y + C z + D = 0 ⇔ A x + B y + C z = 0

Такая плоскость в прямоугольной системе координат проходит через начало координат. В самом деле, если подставим в полученное неполное уравнение плоскости координаты точки О ( 0 , 0 , 0 ) , то придем к тождеству:

A · 0 + B · 0 + C · 0 = 0 ⇔ 0 ≡ 0

Найти уравнение плоскости проходящей через начало координат и через прямую

  1. Если А = 0 , В ≠ 0 , С ≠ 0 , или А ≠ 0 , В = 0 , С ≠ 0 , или А ≠ 0 , В ≠ 0 , С = 0 , то общие уравнения плоскостей имеют вид соответственно: B y + C z + D = 0 , или A x + C z + D = 0 , или A x + B y + D = 0 . Такие плоскости параллельны координатным осям О x , O y , O z соответственно. Когда D = 0 , плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей B y + C z + D = 0 , A x + C z + D = 0 и A x + B y + D = 0 задают плоскости, которые перпендикулярны плоскостям O y z , O x z , O z y соответственно.

Найти уравнение плоскости проходящей через начало координат и через прямую

  1. При А = 0 , В = 0 , С ≠ 0 , или А = 0 , В ≠ 0 , С = 0 , или А ≠ 0 , В = 0 , С = 0 получим общие неполные уравнения плоскостей: C z + D = 0 ⇔ z + D C = 0 ⇔ z = — D C ⇔ z = λ , λ ∈ R или B y + D = 0 ⇔ y + D B = 0 ⇔ y = — D B ⇔ y = λ , λ ∈ R или A x + D = 0 ⇔ x + D A = 0 ⇔ x = — D A ⇔ x = λ , λ ∈ R соответственно.

Эти уравнения определяют плоскости, которые параллельны координатным плоскостям O x y , O x z , O y z соответственно и проходят через точки 0 , 0 , — D C , 0 , — D B , 0 и — D A , 0 , 0 соответственно. При D = 0 уравнения самих координатных плоскостей O x y , O x z , O y z выглядят так: z = 0 , y = 0 , x = 0

Найти уравнение плоскости проходящей через начало координат и через прямую

Задана плоскость, параллельная координатной плоскости O y z и проходящая через точку М 0 ( 7 , — 2 , 3 ) . Необходимо составить общее уравнение заданной плоскости.

Р​​ешение

У​​​​​словием задачи определено, что заданная плоскость параллельна координатной плоскости O y z , а, следовательно, может быть задана общим неполным уравнением плоскости A x + D = 0 , A ≠ 0 ⇔ x + D A = 0 . Поскольку точка M 0 ( 7 , — 2 , 3 ) лежит на плоскости по условию задачи, то очевидно, что координаты этой точки должны отвечать уравнению плоскости x + D A = 0 , иначе говоря, должно быть верным равенство 7 + D A = 0 . Преобразуем: D A = — 7 , тогда требуемое уравнение имеет вид: x — 7 = 0 .

Задачу возможно решить еще одним способом.

Вновь обратим внимание на заданную условием задачи параллельность данной плоскости координатной плоскости O y z . Из этого условия понятно, что возможно в качестве нормального вектора заданной плоскости использовать нормальный вектор плоскости O y z : i → = ( 1 , 0 , 0 ) . Так, нам известны и точка, принадлежащая плоскости (задана условием задачи) и ее нормальный вектор. Таким образом, становится возможно записать общее уравнение заданной плоскости:

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 ⇔ ⇔ 1 · ( x — 7 ) + 0 · ( y + 2 ) + 0 · ( z — 3 ) = 0 ⇔ ⇔ x — 7 = 0

Ответ: x — 7 = 0

Задана плоскость, перпендикулярная плоскости O x y и проходящая через начало координат и точку М 0 ( — 3 , 1 , 2 ) .

Решение

Плоскость, которая перпендикулярна координатной плоскости O x y определяется общим неполным уравнением плоскости A x + B y + D = 0 ( А ≠ 0 , В ≠ 0 ) . Условием задачи дано, что плоскость проходит через начало координат, тогда D = 0 и уравнение плоскости принимает вид A x + B y = 0 ⇔ x + B A y = 0 .

Найдем значение B A . В исходных данных фигурирует точка М 0 ( — 3 , 1 , 2 ) , координаты которой должны отвечать уравнению плоскости. Подставим координаты, получим верное равенство: — 3 + B A · 1 = 0 , откуда определяем B A = 3 .

Так, мы имеем все данные, чтобы записать требуемое общее уравнение плоскости: x + 3 y = 0 .

Видео:Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

1.3.2. Аналитическая геометрия в пространстве

1. Всякая плоскость в координатном пространстве OXYZ имеет векторное уравнение следующего вида: r ¦ п = p. Здесь

r = xi + yj + zk — радиус-вектор текущей точки плоскости

M(x, у, z); п = i cosa + j cos b + k cosg — единичный вектор, имеющий направление перпендикуляра, опущенного на плоскость из начала координат, a, b, g — углы, образованные этим перпендикуляром с осями координат OX, OY, OZ, и р — длина этого перпендикуляра.

При переходе к координатам это уравнение принимает вид xcos a + ycos b + zcos g — p = 0 (нормальное уравнение плоскости).

2. Уравнение всякой плоскости может быть записано также в виде Ах + Ву +Cz + D = 0 (общее уравнение). Здесь А, B, C можно рассматривать как координаты некоторого вектора

N = Ai + Bj + Ck, перпендикулярного к плоскости. Для приведения общего уравнения плоскости к нормальному виду все члены уравнения надо умножить на нормирующий множитель

Найти уравнение плоскости проходящей через начало координат и через прямую

где знак перед радикалом противоположен знаку свободного члена D в общем уравнении плоскости.

3. Частные случаи расположения плоскости, определяемой уравнением Ах + Ву +Cz + D = 0:

А = 0; плоскость параллельна оси ОХ;

В = 0; плоскость параллельна оси О^

C = 0; плоскость параллельна оси ОZ;

D = 0; плоскость проходит через начало координат;

А = В = 0; плоскость перпендикулярна оси ОZ (параллельна плоскости ХОY);

А = C = 0; плоскость перпендикулярна оси ОY (параллельна плоскости ХОZ);

В = C = 0; плоскость перпендикулярна оси ОХ (параллельна плоскости YОZ);

А = D = 0; плоскость проходит через ось ОХ;

В = D = 0; плоскость проходит через ось OY;

C = D = 0; плоскость проходит через ось OZ;

А = В = D = 0; плоскость совпадает с плоскостью XOY (z = 0);

А = C = D = 0; плоскость совпадает с плоскостью XOZ (у = 0);

B = C = D = 0; плоскость совпадает с плоскостью YOZ (х = 0).

Если в общем уравнении Ах + By +Cz + D = 0 коэффициент D ф 0, то, разделив все члены уравнения на — D, можно уравнение

плоскости привести к видуНайти уравнение плоскости проходящей через начало координат и через прямую^ здесьНайти уравнение плоскости проходящей через начало координат и через прямую

. Это уравнение плоскости называется уравнением в отрезках: в нем а — абсцисса точки пересечения плоскости с осью OX, b и с — соответственно ордината и аппликата точек пересечения плоскости с осями OY и OZ.

4. Угол j между плоскостями А1х + В1У + Qz + D1 = 0 и А2х + В2У +C2z + D2 = 0 определяется по формуле

Найти уравнение плоскости проходящей через начало координат и через прямую

Условие параллельности плоскостей:

Найти уравнение плоскости проходящей через начало координат и через прямую

Условие перпендикулярности плоскостей:

Найти уравнение плоскости проходящей через начало координат и через прямую

5. Расстояние от точки М0(х0; у0; z0) до плоскости, определяемой уравнениемНайти уравнение плоскости проходящей через начало координат и через прямуюНаходится по формуле

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Оно равно взятому по абсолютной величине результату подстановки координат точки в нормальное уравнение плоскости; знак результата этой подстановки характеризует взаимное расположение точки M0 и начала координат относительно данной плоскости: этот знак положителен, если точка M0 и начало координат расположены по разные стороны от плоскости, и отрицателен, если они расположены по одну сторону от плоскости.

6. Уравнение плоскости, проходящей через точку М0(х0; у0; z0)

и перпендикулярной к вектору N = Ai + Bj + Ck, имеет вид А(х — х0) + B(y — у0) + C(z — z0) = 0. При произвольных А, В и C последнее уравнение определяет некоторую плоскость, принадлежащую к связке плоскостей, проходящих через точку М0. Его часто поэтому называют уравнением связки плоскостей.

7. Уравнение А1х + B1y +C1z + D1 + А(А2х + B^y +C2z + D2) = 0 при произвольном I определяет некоторую плоскость, проходящую через прямую, по которой пересекаются плоскости, определяемые уравнениями

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

некоторую плоскость, принадлежащую пучку плоскостей, проходящих через эту прямую (в силу чего такое уравнение часто называют уравнением пучка плоскостей). Если плоскости, определяемые уравнениями I и II, параллельны, то пучок плоскостей превращается в совокупность плоскостей, параллельных этим плоскостям.

8. Уравнение плоскости, проходящей через три заданные точки M1(r 1Х M1(Jj), M3(r 3) (Л = x1i + yd + z1k; r2 = x2i + У2 j + z2k; r3 = x3i + y3 j + z3 к), проще всего найти из условия компланарности векторов r — T1, r2 — rl, r3 — rl, где r = xi + yj+zk — радиус-вектор текущей точки искомой плоскости M:

или в координатной форме:

Найти уравнение плоскости проходящей через начало координат и через прямуюНайти уравнение плоскости проходящей через начало координат и через прямую

Пример 1.21. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + у + 5z — 1 = 0, 2x + 3у — z + 2 = 0 и через точку М(3, 2, 1).

Решение. Воспользуемся уравнением пучка плоскостей

Найти уравнение плоскости проходящей через начало координат и через прямую

Значение I определяем из условия, что координаты точки М должны удовлетворять этому уравнению:

Найти уравнение плоскости проходящей через начало координат и через прямую

Получаем искомое уравнение в виде:

Найти уравнение плоскости проходящей через начало координат и через прямую

или, умножая на 13 и приводя подобные члены, в виде:

Найти уравнение плоскости проходящей через начало координат и через прямую

Пример 1.22. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + 3у + 5z — 4 = 0 и X — у — 2z + 7 = 0 и параллельной оси оу.

Решение. Воспользуемся уравнением пучка x + 3у + 5z — 4 + + l(x — у — 2z + 7) = 0, преобразуем уравнение к виду (1 + Х)х + (3 -1)у + (5 — 2l)z + (71 — 4) = 0.

Так как искомая плоскость параллельна оси ординат, то коэффициент при у должен равняться нулю, т. е. 3 — l = 0, I = 3. Подставив значение I в уравнение пучка, получаем

Найти уравнение плоскости проходящей через начало координат и через прямую

Пример 1.23. Найти уравнение плоскости, проходящей через точки М (2; -1; 4) и N(3; 2; -1) перпендикулярно к плоскости X + у + z — 3 = 0.

Решение. Воспользуемся уравнением плоскости, проходящей через первую из данных точек:

Найти уравнение плоскости проходящей через начало координат и через прямую

Условие прохождения этой плоскости через вторую точку и условие перпендикулярности определяются равенствами:

Найти уравнение плоскости проходящей через начало координат и через прямую

Исключая коэффициенты А, В и C из системы уравнений

Найти уравнение плоскости проходящей через начало координат и через прямую

получаем искомое уравнение в виде:

Найти уравнение плоскости проходящей через начало координат и через прямуюНайти уравнение плоскости проходящей через начало координат и через прямую

Пример 1.24. Из точки P(2; 3; -5) на координатные плоскости опущены перпендикуляры. Найти уравнение плоскости, проходящей через их основания.

Решение. Основаниями перпендикуляров, опущенных на координатные плоскости, будут следующие точки М1(2; 3; 0), М2(2; 0; -5), М3(0; 3; -5). Напишем уравнение плоскости, проходящей через точки М1, М2, М3, для чего воспользуемся уравнением

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Пример 1.25. Составить уравнение плоскости, проходящей через точку M (2; 3; 5) и перпендикулярной к вектору

Найти уравнение плоскости проходящей через начало координат и через прямую

Решение. Достаточно воспользоваться уравнением плоскости, проходящей через данную точку и перпендикулярной к данному вектору:

Найти уравнение плоскости проходящей через начало координат и через прямую

1. Прямая может быть задана уравнениями 2-х плоскостей

Найти уравнение плоскости проходящей через начало координат и через прямую

пересекающихся по этой прямой.

2. Исключив поочередно х и у из предыдущих уравнений, получим уравнения х = аz + с, у = bz + d. Здесь прямая определена двумя плоскостями, проектирующими ее на плоскости хoz и yoz.

3. Если даны две точки M(x1, у1, z1) и N(x2, у2, z2), то уравнения прямой, проходящей через них, будут иметь вид:

Найти уравнение плоскости проходящей через начало координат и через прямую

4. Так называемые канонические уравненияНайти уравнение плоскости проходящей через начало координат и через прямую

определяют прямую, проходящую через точку M(x1, у1, z1)

и параллельную вектору S = li + mj + nk. В частности, эти уравнения могут быть записаны в виде:

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

где a, b и g — углы, образованные прямой с осями координат.

Найти уравнение плоскости проходящей через начало координат и через прямую

5. От канонических уравнений прямой, вводя параметр t, нетрудно перейти к параметрическим уравнениям прямой:

Найти уравнение плоскости проходящей через начало координат и через прямую

6. Угол между двумя прямыми, заданными их каноническими

Найти уравнение плоскости проходящей через начало координат и через прямую
Найти уравнение плоскости проходящей через начало координат и через прямую

деляется по формуле

перпендикулярности двух прямых:

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

условие параллельности двух прямых:

Найти уравнение плоскости проходящей через начало координат и через прямую

7. Необходимое и достаточное условие расположения двух прямых, заданных их каноническими уравнениями, в одной плоскости (условие компланарности двух прямых):

Найти уравнение плоскости проходящей через начало координат и через прямую

Если величины /1, т, П1 непропорциональны величинам /2, m2, «2, то указанное соотношение является необходимым и достаточным условием пересечения двух прямых в пространстве.

условие параллельности прямой и плоскости: Найти уравнение плоскости проходящей через начало координат и через прямую Найти уравнение плоскости проходящей через начало координат и через прямую Найти уравнение плоскости проходящей через начало координат и через прямуюусловие перпендикулярности прямой и плоскости:

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямуюОпределяется по формуле

Найти уравнение плоскости проходящей через начало координат и через прямую

9. Для определения точки пересечения прямойНайти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямуюС плоскостью Ах + Ву + Cz + D = 0 нужно решить совместно их уравнения, для чего следует воспользоваться параметрическими уравнениями прямой x = /t + X0, у = mt + у0, z = nt + z0:

а) если А/ + Вт + Cn ф 0, то прямая пересекает плоскость в одной точке;

б) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D ф 0, то прямая параллельна плоскости;

в) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D = 0, то прямая лежит в плоскости.

Пример 1.26. Привести к каноническому виду уравнения прямой 2х — у + 3z — 1 = 0 и 5х + 4у — z — 7 = 0.

Решение. Исключив вначале у, а затем z, получим:

Если разрешим каждое из уравнений относительно х, то будем иметь:

отсюдаНайти уравнение плоскости проходящей через начало координат и через прямую

Второй способ: найдем вектор S = li + mj + nk, параллельный искомой прямой. Так как он должен быть перпендикулярен к нормальным векторам заданных плоскостей N1 = 2i — j + 3k и N2= 5i + 4 j — k, то за него можно принять векторное произведение векторов N1 и N2.

Найти уравнение плоскости проходящей через начало координат и через прямую

Таким образом, l = -11; m = 17; n = 13.

За точку M1(x1, у1, z1), через которую проходит искомая прямая, можно принять точку пересечения ее с любой из координатных плоскостей, например с плоскостью yoz. Т ак как при этом x1 = 0, то координаты y1 и z1 этой точки определятся из системы уравнений заданных плоскостей, если в них положить х = 0:

Решая эту систему, находим у1 = 2; z1 = 1.

Итак, искомая прямая определяется уравнениями:

Найти уравнение плоскости проходящей через начало координат и через прямую

Мы получили прежний ответ.

Пример 1.27. Построить прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Решение. Искомую прямую можно построить как линию пересечения плоскостей. Для этого напишем уравнения плоскостей, которыми определена прямая, в отрезках на осях:

Найти уравнение плоскости проходящей через начало координат и через прямую

Пример 1.28. Из начала координат опустить перпендикуляр на прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Решение. Составим уравнение плоскости, проходящей через начало координат и перпендикулярной заданной прямой: 2х + 3у + z = 0. (Для этой плоскости можно принять А = l; B = m; C = n; D = 0; использовано условие перпендикулярности прямой и плоскости, см. п. 8 введения к настоящему разделу).

Найдем точку пересечения этой плоскости и данной прямой. Параметрические уравнения прямой имеют вид:

Найти уравнение плоскости проходящей через начало координат и через прямую

Построив данные плоскости, мы получим искомую прямую как линию пересечения этих плоскостей (рис. 20).

Для определения t имеем уравнение:

Найти уравнение плоскости проходящей через начало координат и через прямуюНайти уравнение плоскости проходящей через начало координат и через прямую

Остается составить уравнения прямой, проходящей через начало координат и через точку М (см. п. 3 введения к настоящему разделу):

Найти уравнение плоскости проходящей через начало координат и через прямую

Пример 1.29. В уравнениях прямойНайти уравнение плоскости проходящей через начало координат и через прямуюОпределить

параметр n так, чтобы эта прямая пересекалась с прямой

Найти уравнение плоскости проходящей через начало координат и через прямую, и найти точку их пересечения.

Решение. Для нахождения параметра n используем условие пересечения 2-х прямых:

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Следовательно, уравнения пересекающихся прямых таковы: искомой:

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Для вычисления координат точки пересечения этих прямых выразим из первого уравнения х и у через z: х = 2z, у = -3z. Подставляя их значения в равенствоНайти уравнение плоскости проходящей через начало координат и через прямуюИмеемНайти уравнение плоскости проходящей через начало координат и через прямую,

отсюда z = 1. Зная z, находим х и у: х = 2z = 2, у = -3z = -3. Следовательно M(2; -3; 1).

Пример 1.30. Прямая задана каноническими уравнениями

Найти уравнение плоскости проходящей через начало координат и через прямую

Составить общие уравнения этой прямой.

Решение. Канонические уравнения прямой можно записать в виде системы двух независимых уравнений:

Найти уравнение плоскости проходящей через начало координат и через прямую

Получили общие уравнения прямой, которая теперь задана пересечением 2-х плоскостей, одна из которых 5х — 3у — 13 = 0 параллельна оси Oz, а другая х + 3z — 11 = 0 параллельна оси Oy.

Пример 1.31. Найти координаты точки M, делящей попалам отрезок прямой

Найти уравнение плоскости проходящей через начало координат и через прямую

заключенный между плоскостями хoz и xoy.

Решение. Найдем точку А пересечения прямой с плоскостью хoz, полагая в уравнениях прямой у = 0. Тогда получим:

отсюда x = 2,6; z = 2,8. Тогда А(2,6; 0; 2,8).

Найти уравнение плоскости проходящей через начало координат и через прямуюНайти уравнение плоскости проходящей через начало координат и через прямую

отсюда X = 11, у = 14, или В(11; 14; 0).

Определяем координаты точки М, делящей отрезок АВ пополам:

Найти уравнение плоскости проходящей через начало координат и через прямую

Следовательно, координаты искомой точки М будут: М(6,8; 7; 1,4).

Пример 1.32. Составить уравнение плоскости, проходящей через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Решение. Составим уравнение пучка плоскостей, проходящих через первую из данных прямых:

Найти уравнение плоскости проходящей через начало координат и через прямую

которое делим на а ф 0, и пусть b /а = I:

Найти уравнение плоскости проходящей через начало координат и через прямую

Аналогично, полагая в уравнениях прямой z = 0, найдем координаты точки В пересечения прямой с плоскостью хоу:

В этом пучке нужно выбрать плоскость, параллельную 2-й данной прямой. Из условия параллельности плоскости и прямой, имеем:

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Найти уравнение плоскости проходящей через начало координат и через прямую

Подставляя I = 1 в уравнение пучка плоскостей, получим: Найти уравнение плоскости проходящей через начало координат и через прямуюТогда искомое уравнение плоскости будет:

Найти уравнение плоскости проходящей через начало координат и через прямую

Пример 1.33. Дана прямая Найти уравнение плоскости проходящей через начало координат и через прямуюНайти ее проекцию на плоскость

Решение. Нужно найти плоскость, которая проходит через данную прямую перпендикулярно к данной плоскости; тогда искомая проекция определится как пересечение этой плоскости с данной.

Составим уравнение пучка плоскостей, проходящих через данную прямую:

Эта плоскость должна быть перпендикулярной к данной плоскости, что можно записать как:

Тогда уравнение плоскости, проходящей через данную прямую и перпендикулярной данной плоскости, будет:

Проекция данной прямой на данную плоскость определяется как прямая пересечения плоскостей:

Найти уравнение плоскости проходящей через начало координат и через прямую

Запишем эту прямую в каноническом виде. Найдем на прямой какую-либо точку. Для этого положим, например х0 = 1, и система запишется в виде:

Найти уравнение плоскости проходящей через начало координат и через прямую

Отсюда, у0 = 1, z0 = 0, т. е. точка M(1; 1; 0) принадлежит искомой прямой.

Направляющий вектор прямой S = (l; m; n) найдем из того условия, что он перпендикулярен нормальным векторам

N1 = (2; -3; -2) и N2 = (5; 2; 2) плоскостей, определяющих искомую прямую.

В качестве S берем векторное произведение векторов N1 и N2 , т. е.

Найти уравнение плоскости проходящей через начало координат и через прямую

Тогда искомое уравнение в каноническом виде будет:

🔍 Видео

Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

Матан за час. Шпаргалка для первокурсника. Высшая математика

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Расстояние от точки до прямой (метод координат)Скачать

Расстояние от точки до прямой (метод координат)

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 клСкачать

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 кл

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

5. Нормальное уравнение плоскости выводСкачать

5. Нормальное уравнение плоскости вывод

Видеоурок "Нормальное уравнение плоскости"Скачать

Видеоурок "Нормальное уравнение плоскости"

2. Уравнение плоскости примеры решения задач #1Скачать

2. Уравнение плоскости примеры решения задач #1
Поделиться или сохранить к себе: